We construct a polynomial of degree d in two variables whose Hessian curve has connected components using Viro patchworking. In particular, this implies the existence of a smooth real algebraic surface of degree d in whose parabolic curve is smooth and has connected components.
À l'aide du patchwork de Viro, nous construisons un polyôme de degré d en deux variables dont la courbe Hessienne a composantes connexes. Cela implique en particulier l'existence d'une surface algébrique réelle de degré d dans dont la courbe parabolique, lisse, a composantes connexes.
Accepted:
Published online:
@article{CRMATH_2010__348_5-6_287_0, author = {Bertand, Beno{\^\i}t and Brugall\'e, Erwan}, title = {On the number of connected components of the parabolic curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {287--289}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.028}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2010.01.028/} }
TY - JOUR AU - Bertand, Benoît AU - Brugallé, Erwan TI - On the number of connected components of the parabolic curve JO - Comptes Rendus. Mathématique PY - 2010 SP - 287 EP - 289 VL - 348 IS - 5-6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.01.028/ DO - 10.1016/j.crma.2010.01.028 LA - en ID - CRMATH_2010__348_5-6_287_0 ER -
%0 Journal Article %A Bertand, Benoît %A Brugallé, Erwan %T On the number of connected components of the parabolic curve %J Comptes Rendus. Mathématique %D 2010 %P 287-289 %V 348 %N 5-6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.01.028/ %R 10.1016/j.crma.2010.01.028 %G en %F CRMATH_2010__348_5-6_287_0
Bertand, Benoît; Brugallé, Erwan. On the number of connected components of the parabolic curve. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 287-289. doi : 10.1016/j.crma.2010.01.028. https://www.numdam.org/articles/10.1016/j.crma.2010.01.028/
[1] Arnold's Problems, Springer Verlag, Berlin, 2004
[2] Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994
[3] Eine neue Relation zwischen den Singularitäten einer algebraischen Curve, Math. Ann., Volume 10 (1876) no. 2, pp. 199-209
[4] Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology, Volume 43 (2004), pp. 1035-1060
[5] Quelques aspects sur la géométrie des surfaces algébriques réelles, Bull. Sci. Math., Volume 127 (2003), pp. 149-177
[6] Real Hessian curves, Boletín de la Sociedad Mathemática Mexicana, Volume 13 (2007), pp. 157-166
[7] Construction d'hypersurfaces réelles (d'après Viro), Séminaire Bourbaki, Volume 763 (1992) (in French)
[8] Klein's paper on real flexes vindicated (Pawlucki, W.; Jakubczyk, B.; Stasica, J., eds.), Singularities Symposium – Lojasiewicz 70, vol. 44, Banach Center Publications, 1998
[9] An equation of reality for real and imaginary plane curves with higher singularities, Proc. Section of Sciences of the Royal Academy of Amsterdam, Volume 6 (1903–1904), pp. 764-773
[10] Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7, Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187-200
[11] Some integral calculus based on Euler characteristic, Lecture Notes in Math., vol. 1346, Springer Verlag, 1988, pp. 127-138
[12] Real plane algebraic curves: constructions with controlled topology, Leningrad Math. J., Volume 1 (1989) no. 5, pp. 1059-1134
Cited by Sources: