@article{AIHPC_2006__23_6_929_0,
author = {Zaslavski, Alexander J.},
title = {A nonintersection property for extremals of variational problems with vector-valued functions},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {929--948},
year = {2006},
publisher = {Elsevier},
volume = {23},
number = {6},
doi = {10.1016/j.anihpc.2006.01.002},
mrnumber = {2271702},
zbl = {05138727},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.01.002/}
}
TY - JOUR AU - Zaslavski, Alexander J. TI - A nonintersection property for extremals of variational problems with vector-valued functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 929 EP - 948 VL - 23 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.01.002/ DO - 10.1016/j.anihpc.2006.01.002 LA - en ID - AIHPC_2006__23_6_929_0 ER -
%0 Journal Article %A Zaslavski, Alexander J. %T A nonintersection property for extremals of variational problems with vector-valued functions %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 929-948 %V 23 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.01.002/ %R 10.1016/j.anihpc.2006.01.002 %G en %F AIHPC_2006__23_6_929_0
Zaslavski, Alexander J. A nonintersection property for extremals of variational problems with vector-valued functions. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 929-948. doi: 10.1016/j.anihpc.2006.01.002
[1] , Mather sets for twist maps and geodesics on tori, in: Dynamics Reported, vol. 1, Teubner, Stuttgart, 1988, pp. 1-56. | Zbl | MR
[2] , On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 95-138. | Zbl | MR | Numdam
[3] , Optimization - Theory and Applications, Springer-Verlag, New York, 1983. | Zbl | MR
[4] , On optimal development in a multi-sector economy, Rev. Economic Studies 34 (1967) 1-18.
[5] , , On the regularity of the minima of variational integrals, Acta Math. 148 (1982) 31-46. | MR
[6] , Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math. 33 (1984) 719-739. | MR | JFM
[7] , Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim. 13 (1985) 19-43. | Zbl | MR
[8] , , One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal. 106 (1989) 161-194. | Zbl | MR
[9] , , The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 593-629. | Zbl | MR | Numdam
[10] , , The structure and limiting behavior of locally optimal minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 343-370. | Zbl | MR | Numdam
[11] , A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924) 25-60. | MR | JFM
[12] , Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 229-272. | Zbl | MR | Numdam
[13] , , On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 673-688. | Zbl | MR | Numdam
[14] , , On some results of Moser of Bangert. II, Adv. Nonlinear Stud. 4 (2004) 377-396. | Zbl | MR
[15] , The existence of periodic minimal energy configurations for one dimensional infinite horizon variational problems arising in continuum mechanics, J. Math. Anal. Appl. 194 (1995) 459-476. | Zbl | MR
[16] , Dynamic properties of optimal solutions of variational problems, Nonlinear Anal. 27 (1996) 895-931. | Zbl | MR
[17] , Existence and uniform boundedness of optimal solutions of variational problems, Abstr. Appl. Anal. 3 (1998) 265-292. | Zbl | MR
[18] , The turnpike property for extremals of nonautonomous variational problems with vector-valued functions, Nonlinear Anal. 42 (2000) 1465-1498. | Zbl | MR
[19] , A turnpike property for a class of variational problems, J. Convex Anal. 12 (2005) 331-349. | Zbl | MR
[20] , Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006. | Zbl | MR
Cité par Sources :






