Article
$C^\ast$-rigidity of bounded geometry metric spaces
Publications Mathématiques de l'IHÉS, Tome 141 (2025), pp. 333-348

We prove that uniformly locally finite metric spaces with isomorphic Roe algebras must be coarsely equivalent. As an application, we also prove that the outer automorphism group of the Roe algebra of such a metric space is canonically isomorphic to the group of coarse equivalences of the space up to closeness.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-025-00155-3
@article{PMIHES_2025__141__333_0,
     author = {Mart{\'\i}nez, Diego and Vigolo, Federico},
     title = {$C^\ast$-rigidity of bounded geometry metric spaces},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {333--348},
     year = {2025},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {141},
     doi = {10.1007/s10240-025-00155-3},
     zbl = {08054052},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-025-00155-3/}
}
TY  - JOUR
AU  - Martínez, Diego
AU  - Vigolo, Federico
TI  - $C^\ast$-rigidity of bounded geometry metric spaces
JO  - Publications Mathématiques de l'IHÉS
PY  - 2025
SP  - 333
EP  - 348
VL  - 141
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-025-00155-3/
DO  - 10.1007/s10240-025-00155-3
LA  - en
ID  - PMIHES_2025__141__333_0
ER  - 
%0 Journal Article
%A Martínez, Diego
%A Vigolo, Federico
%T $C^\ast$-rigidity of bounded geometry metric spaces
%J Publications Mathématiques de l'IHÉS
%D 2025
%P 333-348
%V 141
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-025-00155-3/
%R 10.1007/s10240-025-00155-3
%G en
%F PMIHES_2025__141__333_0
Martínez, Diego; Vigolo, Federico. $C^\ast$-rigidity of bounded geometry metric spaces. Publications Mathématiques de l'IHÉS, Tome 141 (2025), pp. 333-348. doi: 10.1007/s10240-025-00155-3

[1.] Aparicio, M. P. G.; Julg, P.; Valette, A. The Baum–Connes conjecture: an extended survey, Advances in Noncommutative Geometry: On the Occasion of Alain Connes’ 70th Birthday, 2019, pp. 127-244 | Zbl | DOI

[2.] Baudier, F. P.; Braga, B. M.; Farah, I.; Khukhro, A.; Vignati, A.; Willett, R. Uniform Roe algebras of uniformly locally finite metric spaces are rigid, Invent. Math., Volume 230 (2022), pp. 1071-1100 | MR | Zbl | DOI

[3.] Blackadar, B. Operator Algebras: Theory of C * -Algebras and Von Neumann Algebras, Springer, Berlin, 2006 | Zbl | DOI

[4.] Braga, B. M.; Farah, I. On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces, Trans. Am. Math. Soc., Volume 374 (2021), pp. 1007-1040 | MR | Zbl | DOI

[5.] Braga, B. M.; Vignati, A. A Gelfand-type duality for coarse metric spaces with property A, Int. Math. Res. Not., Volume 11 (2023), pp. 9799-9843 | MR | Zbl | DOI

[6.] Braga, B. M.; Chung, Y. C.; Li, K. Coarse Baum–Connes conjecture and rigidity for Roe algebras, J. Funct. Anal., Volume 279 (2020) | MR | DOI | Zbl

[7.] Braga, B. M.; Farah, I.; Vignati, A. Embeddings of uniform Roe algebras, Commun. Math. Phys., Volume 377 (2020), pp. 1853-1882 | MR | DOI | Zbl

[8.] Braga, B. M.; Farah, I.; Vignati, A. Uniform Roe coronas, Adv. Math., Volume 389 (2021) | MR | Zbl | DOI

[9.] Braga, B. M.; Farah, I.; Vignati, A. General uniform Roe algebra rigidity, Ann. Inst. Fourier, Volume 72 (2022), pp. 301-337 | MR | DOI | Zbl

[10.] Bridson, M. R.; Haefliger, A. Metric Spaces of Non-positive Curvature, 319, Springer, Berlin, 2013

[11.] de La Harpe, P. Topics in Geometric Group Theory, University of Chicago Press, Chicago, 2000 | Zbl

[12.] Druţu, C.; Kapovich, M. Geometric Group Theory, 63, 2018 (American Mathematical Soc.) | Zbl | DOI

[13.] Ewert, E. E.; Meyer, R. Coarse geometry and topological phases, Commun. Math. Phys., Volume 366 (2019), pp. 1069-1098 | MR | Zbl | DOI

[14.] Gromov, M. Geometric Group Theory: Asymptotic Invariants of Infinite Groups, 1993

[15.] Higson, N.; Roe, J. On the coarse Baum–Connes conjecture, Novikov Conjectures, Index Theorems and Rigidity (Oberwolfach, 1993), 2, 1995, pp. 227-254 | Zbl | DOI

[16.] Higson, N.; Roe, J.; Yu, G. A coarse Mayer-Vietoris principle, Math. Proc. Camb. Philos. Soc., Volume 114 (1993), pp. 85-97 | MR | Zbl | DOI

[17.] B. Jiang and J. Zhang, Rigidity for geometric ideals in uniform Roe algebras, J. Oper. Theory (to appear).

[18.] Khukhro, A.; Li, K.; Vigolo, F.; Zhang, J. On the structure of asymptotic expanders, Adv. Math., Volume 393 (2021) (35) | MR | Zbl | DOI

[19.] Li, K.; Špakula, J.; Zhang, J. Measured asymptotic expanders and rigidity for Roe algebras, Int. Math. Res. Not., Volume 17 (2023), pp. 15102-15154 | MR | DOI | Zbl

[20.] D. Martínez and F. Vigolo, Roe-like algebras of coarse spaces via coarse geometric modules, 2023, arXiv preprint, | arXiv

[21.] D. Martínez and F. Vigolo, A rigidity framework for Roe-like algebras, 2024, arXiv preprint, | arXiv

[22.] Roe, J. An index theorem on open manifolds. I, J. Differ. Geom., Volume 27 (1988), pp. 87-113 | MR | Zbl

[23.] J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Am. Math. Soc., 104 (1993), x+90.

[24.] Roe, J. Lectures on Coarse Geometry, 31, 2003 (American Mathematical Soc.) | Zbl

[25.] Roe, J.; Willett, R. Ghostbusting and property A, J. Funct. Anal., Volume 266 (2014), pp. 1674-1684 | MR | DOI | Zbl

[26.] Sako, H. Property A and the operator norm localization property for discrete metric spaces, J. Reine Angew. Math., Volume 690 (2014), pp. 207-216 | MR | DOI | Zbl

[27.] Skandalis, G.; Tu, J. L.; Yu, G. The coarse Baum–Connes conjecture and groupoids, Topology, Volume 41 (2002), pp. 807-834 | MR | DOI | Zbl

[28.] Špakula, J.; Willett, R. Maximal and reduced Roe algebras of coarsely embeddable spaces, J. Reine Angew. Math., Volume 678 (2013), pp. 35-68 | MR | Zbl

[29.] Špakula, J.; Willett, R. On rigidity of Roe algebras, Adv. Math., Volume 249 (2013), pp. 289-310 | MR | Zbl | DOI

[30.] Willett, R. Some notes on property A, Limits of Graphs in Group Theory and Computer Science, 2009, pp. 191-281 | Zbl

[31.] Willett, R.; Yu, G. Higher Index Theory, 189, Cambridge University Press, Cambridge, 2020 | DOI | Zbl

[32.] Yu, G. Coarse Baum–Connes conjecture, K-Theory, Volume 9 (1995), pp. 199-221 | MR | Zbl | DOI

[33.] Yu, G. Localization algebras and the coarse Baum–Connes conjecture, K-Theory, Volume 11 (1997), pp. 307-318 | MR | Zbl | DOI

[34.] Yu, G. The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. (2), Volume 147 (1998), pp. 325-355 | MR | Zbl | DOI

[35.] Yu, G. The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000), pp. 201-240 | MR | DOI | Zbl

Cité par Sources :