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ABSTRACT

We prove that uniformly locally finite metric spaces with isomorphic Roe algebras must be coarsely equivalent. As
an application, we also prove that the outer automorphism group of the Roe algebra of such a metric space is canonically
isomorphic to the group of coarse equivalences of the space up to closeness.

1. Introduction

The problem of C∗-rigidity lies at the interface between two seemingly unrelated
worlds. Namely, that of C∗-algebras and that of coarse geometry. Starting from the lat-
ter, coarse geometry is the paradigm of studying (metric) spaces by ignoring their “local”
properties and only investigating their “large-scale” geometric features.

More formally, a map f : X → Y between two metric spaces is controlled if for every
r ≥ 0 there is some R ≥ 0 such that for every pair x1, x2 ∈ X with d(x1, x2) ≤ r, the images
satisfy d(f (x1), f (x2)) ≤ R. Two functions f1, f2 : X → Y are close if supx∈X d(f1(x), f2(x)) <

∞, and two metric spaces X and Y are coarsely equivalent if there exist controlled maps
f : X → Y and g : Y → X such that f ◦ g is close to idY and g ◦ f is close to idX. The
coarse geometric properties of a metric space are those properties that are preserved under
coarse equivalence. A prototypical example of coarse equivalence is given by the inclusion
Z ↪→ R or, more generally, well-behaved discretizations of continuous spaces.

At first sight, coarse equivalence is an extremely weak notion. However, if the space
is equipped with additional structure, such as a group action, it is often possible to extract
an impressive amount of information from its large scale geometry. In fact, geometric
group theory shows that the coarse geometric setup provides the correct framework to
conflate between groups and spaces. The power of this point of view and the breadth
of its applications can be easily inferred from any of the numerous books on the subject
[10–12, 14, 24].

On the operator-algebraic side, the main character is the Roe algebra C∗
Roe(X). Its

origin comes from differential geometry, and can be traced back to [22, 23], where Roe
used the K-theory of related ∗-algebras as receptacles for higher indices of differential
operators on Riemannian manifolds. It was then shown that the K-theory of C∗

Roe(X)

can be related with a coarse K-homology of X via a certain assembly map. The study
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of this map is a subject of prime importance, as it can be used, for instance, as a tool to
uncover deep interplays between topological and analytical properties of manifolds and
prove the Novikov Conjecture [1, 15, 23, 27, 32–35]. More recently, Roe algebras have
also been proposed to model topological phases in mathematical physics [13].

Besides the Roe algebra C∗
Roe(X), other Roe-like algebras such as the uniform Roe

algebra C∗
u(X) and the C∗-algebra of operators of controlled propagation C∗

cp(X) (also
known as “band-dominated operators”) found a solid place in the mathematical land-
scape as well, and have been recognized to be algebras of operators worthy of being
studied in their own right [2, 18, 24, 26, 30]. We refer to Section 2 for definitions.

The existence of bridges between the operator algebraic and coarse geometric
worlds has been known for a very long time. It was observed very early on that coarsely
equivalent metric spaces always have isomorphic Roe algebras [16, 23]. The C∗-rigidity

problem asks whether the converse is also true. This fundamental problem and its coun-
terparts dealing with other Roe-like algebras have been studied extensively. After the
pioneering work [29], a sequence of papers gradually improved the state of the art by
proving C∗-rigidity in more and more general settings [4–9, 17, 19], with a final break-
through obtained in [2], where the C∗-rigidity problem is solved for uniform Roe algebras
of uniformly locally finite spaces.

The main contribution of this work is the complete solution of the C∗-rigidity prob-
lem for uniformly locally finite metric spaces.

Theorem A. — Let X and Y be uniformly locally finite metric spaces. If C∗
Roe(X) ∼= C∗

Roe(Y),

then X and Y are coarsely equivalent. Moreover, the same holds if C∗
Roe( - ) is replaced with C∗

u( - ) or

C∗
cp( - ).

Remark 1.1. — The Roe algebra C∗
Roe(X) can be defined for any proper metric

space X. However, the most important spaces in view of applications are those of bounded

geometry (e.g. covers of compact Riemannian manifolds). By definition, we say that a metric
space has bounded (coarse) geometry if and only if it is coarsely equivalent to a uniformly
locally finite metric space (it is simple to verify that this definition is equivalent to that
of e.g. [15, 24]). Since coarsely equivalent metric spaces have isomorphic Roe algebras,
Theorem A does indeed solve the C∗-rigidity problem for bounded geometry metric
spaces.

As a matter of fact, the techniques here introduced can be adapted to prove
C∗-rigidity for arbitrary proper metric spaces. However, doing so requires overhauling
an important amount of existing literature, and cannot be done in a short space. To keep
this paper brief and clear, we decided to leave such an endeavour for a different work
[21].

The case C∗
u( - ) of Theorem A is the main theorem of [2]. To a large extent, the

strategy of proof follows the same route that, starting with [29], all the works on C∗-rigid-
ity took. Our main technical contribution is the proof of an unconditional “concentration
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inequality” (cf. Proposition 3.2) which represents the last piece of the puzzle in the con-
struction of coarse equivalences.

Going beyond the problem of C∗-rigidity, one disappointing aspect of this picture
is a severe lack of functoriality. For instance, while it is true that with every coarse equiv-
alence f : X → Y one can associate an isomorphism C∗

Roe(X) → C∗
Roe(Y), this choice

is highly non-canonical and very poorly behaved with respect to composition. On the
other hand, it was observed in [5] that this ambiguity vanishes up to innerness. Namely,
there is a natural group homomorphism τ : CE(X) → Out(C∗

Roe(X)) from the group
of closeness-classes of coarse equivalences to the group of outer automorphisms, which
is the quotient Aut(C∗

Roe(X))/M(C∗
Roe(X)) of the group of automorphisms of C∗

Roe(X)

modulo inner automorphisms of its multiplier algebra (innerness is taken in the multiplier
algebra, as C∗

Roe(X) is not unital). It is also proved in [5, Theorem B] that the map τ is
in fact an isomorphism for uniformly locally finite metric spaces with property A (see, e.g.

[25, 30, 35]). The second contribution of the present work shows that this result holds in
complete generality as well.

Theorem B. — If X is a uniformly locally finite metric space, there is a canonical isomorphism

τ : CE(X)
∼=−→ Out(C∗

Roe(X)).

Theorem B is obtained by proving a refinement of Theorem A which we find of
independent interest (cf. Theorem 4.5). This result applies to Out(C∗

cp(X)) as well.

2. Preliminaries

This section briefly covers the necessary background for the paper. We refer the
reader to [4, 5, 20, 24, 28, 31] (and references therein) for a longer discussion on these
topics. Throughout, X and Y denote metric spaces and their metrics will be dX and dY

respectively.

Definition 2.1. — A metric space X is uniformly locally finite if supx∈X|B(x;R)| < ∞
for all R ≥ 0, where

B(x;R) := {
x′ ∈ X | dX

(
x, x′) ≤ R

}

denotes the closed R-ball around x and |A| is the cardinality of A ⊆ X.

As mentioned in the introduction, every bounded geometry metric space is
coarsely equivalent to a uniformly locally finite metric space. Since this is the only case
we are focusing on, we shall work under the following.

Convention 2.2. — X and Y denote uniformly locally finite metric spaces (in particular, they

are countable).
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For simplicity, we will only define Roe algebras in the setting above. A more general
treatment can be found e.g. in [20, 31].

Remark 2.3. — In the following, uniform local finiteness is only needed in Theo-
rem 2.15, the rest of the arguments work equally well for all locally finite metric spaces.

We let H denote an arbitrary (but fixed) Hilbert space. For any A ⊆ X, 1A ∈
B(�2(X;H)) is the orthogonal projection onto �2(A;H) ⊆ �2(X;H). For ease of no-
tation, we also let 1x := 1{x} for all x ∈ X.

Definition 2.4. — We say t ∈ B(�2(X;H)) is locally compact if t1x and 1xt are compact

operators for every x ∈ X.

Definition 2.5. — Let t ∈ B(�2(X;H)), R ≥ 0 and ε > 0.

(i) t has propagation at most R (denoted Prop(t) ≤ R) if 1Bt1A = 0 for every A,B ⊆ X such

that dX(A,B) > R.

(ii) t has controlled propagation if it has propagation at most R for some R ≥ 0.

(iii) t is ε-R-approximable if there is some s ∈ B(�2(X;H)) of propagation at most R such that

‖s − t‖ ≤ ε.

(iv) t is approximable if for all ε > 0 there is some R ≥ 0 such that t is ε-R-approximable.

Remark 2.6. — Note that if H is infinite dimensional then the identity operator is
not locally compact, but it does have propagation 0.

We may now define “Roe-like” algebras depending on H.

Definition 2.7. — Let X be a uniformly locally finite metric space.

(i) C∗
Roe(X;H) is the C∗-subalgebra of B(�2(X;H)) generated by the locally compact operators of

controlled propagation.

(ii) C∗
cp(X;H) is the C∗-subalgebra of B(�2(X;H)) generated by the operators of controlled propa-

gation.

The Roe-like algebras discussed in the introduction are defined making the follow-
ing choices of coefficients:

(i) C∗
Roe(X) := C∗

Roe

(
X;�2(N)

)
;

(ii) C∗
cp(X) := C∗

cp

(
X;�2(N)

)
;

(iii) C∗
u(X) := C∗

Roe(X;C) = C∗
cp(X;C).

For the sake of clarity and generality, in the rest of this paper we will keep the dependence
on H explicit.

Remark 2.8. — We briefly observe the following.
(i) H is finite dimensional if and only if C∗

Roe(X;H) = C∗
cp(X;H).
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(ii) C∗
cp(X;H) can also be defined as the set of approximable operators (cf. Defini-

tion 2.5).
(iii) It is routine to check that every compact operator is in C∗

Roe(X;H). Likewise, it is
also clear that �∞(X,K(H)) ⊆ C∗

Roe(X;H) ⊆ C∗
cp(X;H).

The following weakening of ε-R-approximability will be of use in Proposition 3.2.

Definition 2.9. — Let t ∈ B(�2(X;H)), R ≥ 0 and ε > 0. We say t is ε-R-quasi-local
if ‖1Bt1A‖ ≤ ε for all A,B ⊆ X such that dX(A,B) > R.

Observe that every ε-R-approximable operator is ε-R-quasi-local as well.

Remark 2.10. — Analogously to C∗
cp(X,H), one can also consider the C∗-algebra

of all “quasi-local operators”, and show that the C∗-rigidity phenomenon applies in that
case as well. A unified approach to proving C∗-rigidity simultaneously for all these Roe-
like algebras is the subject of [21].

The following is one of the key notions when discussing rigidity questions.

Definition 2.11. — A bounded operator T : �2(X;H) → �2(Y;H) is weakly approx-
imately controlled if for every r ≥ 0 and ε > 0 there is some R ≥ 0 such that Ad(T) maps

contractions of r-controlled propagation to ε-R-approximable operators:

{
t ∈ B(�2(X;H)) | ‖t‖ ≤ 1, Prop(t) ≤ r

}

Ad(T)−−−→ {ε-R-approximable operators}.

Remark 2.12. — In the terminology of [5, Definition 3.1], T is weakly approxi-
mately controlled if and only if Ad(T) is coarse-like.

For the purposes of this text, the main interest of weakly approximately controlled
operators is the following.

Lemma 2.13. — Let T : �2(X;H) → �2(Y;H) be a weakly approximately controlled con-

traction. Then for every r ≥ 0 and δ > 0 there is an R ≥ 0 such that if A ⊆ X has diam(A) ≤ r

and C,C′ ⊆ Y are such that

‖1CT1A‖,∥∥1C′T1A

∥∥ ≥ δ,

then dY(C,C′) ≤ R.

Proof. — Let v, v′ ∈ �2(A;H) be two norm one vectors such that ‖1CT(v)‖ ≥ δ/2
and ‖1C′T(v′)‖ ≥ δ/2. Let w = T(v) and w′ = T(v′) be their images. Consider the rank-
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1 contractions

ev,v′( - ) := 〈v′, - 〉v and ew,w′( - ) := 〈w′, - 〉w.

Observe that Ad(T) maps ev,v′ to ew,w′ , and that

∥∥1Cew,w′1C′
∥∥ = ∥∥1C(w)

∥∥∥∥1C′
(
w′)∥∥ ≥ δ2

4
.

This shows that Ad(T)(ev,v′) is not δ2

4 -R-quasilocal for any R < dY(C,C′). Since ev,v′ is a
contraction of propagation bounded by diam(A) ≤ r, the weak approximability condition
on T yields the desired uniform upper bound on dY(C,C′). □

We will make use of the following results.

Theorem 2.14 (cf. [29, Lemma 3.1] and [7, Lemma 6.1]). — Any isomorphism Φ :
C∗

Roe(X;H) → C∗
Roe(Y;H) is spatially implemented. That is, there exists a unitary operator

U : �2(X;H) → �2(Y;H) such that Φ = Ad(U)|C∗
Roe(X;H).

Moreover, the same is true if C∗
Roe( - ;H) is replaced by C∗

cp( - ;H).

Theorem 2.15 (cf. [5, Theorems 3.4 and 3.5]). — If U : �2(X;H) → �2(Y;H) is a

unitary such that Ad(U) implements an isomorphism C∗
Roe(X;H) ∼= C∗

Roe(Y;H), then U is weakly

approximately controlled.

Moreover, the same is true if C∗
Roe( - ;H) is replaced by C∗

cp( - ;H).

3. Proof of C*-rigidity

In this section we prove Theorem A. The proof will start as usual, namely by
applying Theorems 2.14 and 2.15 to pass from an isomorphism of C∗-algebras to a well-
behaved unitary operator. It then remains to use this operator to construct a coarse equiv-
alence. In order to do this, we first need to prove Proposition 3.2, which is the key new
technical step in the proof of Theorem A.

3.1. A concentration inequality. — The following lemma leverages the fact that
Hilbert spaces have cotype 2.

Lemma 3.1. — Let (vn)n∈N ⊆H be a sequence of vectors of the Hilbert space H with square-

summable norms. Then

sup
εn=±1

∥∥∥∥
∑

n∈N

εnvn

∥∥∥∥

2

≥
∑

n∈N

‖vn‖2,

where the supremum is taken among all possible (εn)n∈N ∈ {−1,+1}N.
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Proof. — Let Ω := {−1,+1}N be equipped with the usual product probability
measure, and recall the identification L2(Ω) ⊗ H = L2(Ω;H), where the latter is given
the norm ‖F‖2 := ∫

Ω
‖F(ε)‖2dε.

The natural projections rn : Ω → {±1} (the Rademacher functions) are orthonor-
mal in L2(Ω). It then follows from square-summability that the sum F := ∑

n∈N rn ⊗ vn

gives a well-defined element of L2(Ω) ⊗H of square-norm

‖F‖2 =
∑

n∈N

‖rn ⊗ vn‖2 =
∑

n∈N

‖vn‖2.

On the other hand, when seen in L2(Ω;H), the element F is the function F(ε) =∑
n∈N εnvn. Computing its norm in L2(Ω;H) then yields

∫

Ω

∥∥∥∥
∑

n∈N

εnvn

∥∥∥∥

2

dε =
∑

n∈N

‖vn‖2.

The lemma now follows, as the supremum is at least as large as the average. □

Proposition 3.2. — Let U : �2(X;H) → �2(Y;H) be a unitary. Given δ > 0 and R > 0,

suppose there is some y ∈ Y such that

∥∥1B(y;R)U1x

∥∥ ≤ δ for all x ∈ X.

Then for every ε < 1
2(1 − δ2)1/2 there is some A ⊆ X such that U1AU∗ is not ε-R-quasilocal.

Proof. — Let h ∈ H be an arbitrary vector of norm 1 and consider δy ⊗ h ∈
�2(Y,H). Observe that v := U∗(δy ⊗h) ∈ �2(X;H) also has norm 1 and, by construction,
δy ⊗ h = U(v) = 1yU(v). Letting B := B(y;R) one has that for all x ∈ X

∥∥(1 − 1B)U1x(v)
∥∥2 = ∥∥U1x(v)

∥∥2 − ∥∥1BU1x(v)
∥∥2

(3.1)

≥ ∥∥1x(v)
∥∥2 − δ2

∥∥1x(v)
∥∥2 = (

1 − δ2
)∥∥1x(v)

∥∥2
,

where the inequality follows from the hypothesis of the proposition. Fix a small η > 0, to
be determined later. Applying Lemma 3.1 to the family ((1−1B)U1x(v))x∈X one obtains
that there is some choice of signs (εx)x∈X ∈ {−1,+1}X such that

∥∥∥∥
∑

x∈X

εx(1 − 1B)U1x(v)

∥∥∥∥

2

≥
∑

x∈X

∥∥(1 − 1B)U1x(v)
∥∥2 − η(3.2)

≥ (
1 − δ2

)∑

x∈X

∥∥1x(v)
∥∥2 − η = 1 − δ2 − η,



340 DIEGO MARTÍNEZ, FEDERICO VIGOLO

where the second inequality is given by (3.1) and the last equality follows since∑
x∈X 1xv = v has norm 1.

Partition X = P � N, where P := {x ∈ X | εx = +1} and N := X ∖ P, and observe
that

∥∥∥∥
∑

x∈X

εx(1 − 1B)U1x(v)

∥∥∥∥ ≤
∥∥∥∥
∑

x∈P

εx(1 − 1B)U1x(v)

∥∥∥∥

+
∥∥∥∥
∑

x∈N

εx(1 − 1B)U1x(v)

∥∥∥∥.

Then (3.2) implies that, for either A = P or A = N, we have
∥∥∥∥
∑

x∈A

(1 − 1B)U1x(v)

∥∥∥∥ ≥ 1
2

(
1 − δ2 − η

)1/2 ≥ ε,

where the right-most inequality holds if we choose η small enough.
We claim that A ⊆ X has the desired property, i.e. some corner of U1AU∗ that is

“far” from the diagonal has “large” norm. We just check this on the sets {y} and Y ∖ B:
∥∥1Y∖BU1AU∗1y

∥∥ ≥ ∥∥1Y∖BU1AU∗1y(δy ⊗ h)
∥∥ = ∥∥1Y∖BU1A(v)

∥∥

=
∥∥∥∥
∑

x∈A

(1 − 1B)U1x(v)

∥∥∥∥ ≥ ε.

Since X is locally finite and B = B(y;R), it follows that dY(y,Y ∖ B) > R and the above
computation proves the claim. □

3.2. Completing the proof. — Now that Proposition 3.2 has been shown, completing
the proof of C∗-rigidity is a standard routine which essentially relies on the arguments in
[4, 29]. However, the concluding part of [29, Theorem 4.1 and Lemma 4.5] are tailored
to algebras of locally compact operators, and do not directly apply to C∗

cp( - ;H). In view
of this, for the convenience of the reader, we prefer to include a quick proof.

Proof of Theorem A. — Suppose that C∗
Roe(X;H) ∼= C∗

Roe(Y;H) or C∗
cp(X;H) ∼=

C∗
cp(Y;H). Theorems 2.14 and 2.15 show that the isomorphism is implemented by a

weakly approximately controlled unitary U : �2(X;H) → �2(Y;H).
Arbitrarily fix some 0 < δ < 1 and some 0 < ε < 1

2(1 − δ2)1/2. Since 1A has prop-
agation zero for every A ⊆ X, weak approximability implies that there is an R ≥ 0 large
enough so that Ad(U)(1A) is ε-R-quasi-local for all A ⊆ X. Then Proposition 3.2 implies
that for every y ∈ Y there is some x ∈ X with ‖1B(y;R)U1x‖ > δ. Choosing one such x ∈ X
for each y ∈ Y defines a function g : Y → X such that

(3.3)
∥∥1B(y;R)U1g(y)

∥∥ > δ for all y ∈ Y.
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Observe that if dY(y, y′) ≤ r, then

diam
(
B(y;R) ∪ B

(
y′;R

)) ≤ 2R + r,

so Lemma 2.13 gives a uniform upper bound on dX(g(y), g(y′)). That is, g is a controlled
map.

Since U∗ implements the inverse isomorphism, it is weakly approximately con-
trolled as well, always by Theorem 2.15. Therefore, the same argument can be used to
construct a controlled map f : X → Y such that

(3.4)
∥∥1f (x)U1B(x;R)

∥∥ = ∥∥1B(x;R)U
∗1f (x)

∥∥ > δ for all x ∈ X

(picking the largest constant if necessary, we may assume R to be the same for f and g).
It only remains to show that f ◦ g and g ◦ f are close to the identity. Equations (3.3)

and (3.4) show that
∥∥1

B
(

f (x);R
)U1

g

(
f (x)

)∥∥ > δ,

∥∥1
B
(

f (x);R
)U1B(x;R)

∥∥ ≥ ∥∥1f (x)U1B(x;R)

∥∥ > δ.

By Lemma 2.13 there is a uniform upper bound on dX

(
g(f (x)),B(x;R)

)
, from which it

follows that g ◦ f is close to the identity. A symmetric argument applies to f ◦ g. □

4. More refined results

In this last section of the paper we will use two more results to obtain some more
refined information regarding C∗-rigidity. This is in pursuit of some more “functorial”
version of Theorem A.

We start recalling a few facts. In the following, M(C∗
Roe(X;H)) denotes the multi-

plier algebra of C∗
Roe(X;H), which is naturally realized as a subalgebra of B(�2(X;H)).

Theorem 4.1 (cf. [5, Proposition 4.1]). — If X is a uniformly locally finite metric space, then

C∗
cp(X;H) =M(C∗

Roe(X;H)).

Theorem 4.2 (cf. [5, Proposition 2.1] or [20, Theorem 6.20]). — If X is a uniformly locally

finite metric space, then

C∗
Roe(X;H) = C∗

cp(X;H) ∩ {locally compact operators}.
The following is the first result of interest to us. For it, we implicitly use imple-

menting unitaries to see both Aut(C∗
Roe(X;H)) and Aut(C∗

cp(X;H)) as subgroups of the
unitary group of B(�2(X;H)).
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Proposition 4.3. — If X is a uniformly locally finite metric space, then

Aut(C∗
Roe(X;H)) = Aut(C∗

cp(X;H)).

In particular, Out(C∗
Roe(X;H)) = Out(C∗

cp(X;H)).

Proof. — The containment Aut(C∗
Roe(X;H)) ⊆ Aut(C∗

cp(X;H)) is an immediate
consequence of Theorem 4.1: an automorphism of C∗

Roe(X) must extend to its multiplier
algebra (see, e.g. [3, II.7.3.9]), and these automorphisms must be implemented by the
same unitary U ∈ B(�2(X;H)).

For the converse containment, it follows from Theorem 4.2 that it is enough to
show that if U implements an automorphism of C∗

cp(X;H), then Ad(U) must preserve
local compactness. As before, note that U and U∗ are weakly approximately controlled
by Theorem 2.15.

Let A ⊆ X be an arbitrary non-empty finite set. Exhausting X by larger and larger
finite sets, we may find some finite set B ⊆ X such that ‖1BU∗1A‖ ≥ 1/2. An application
of Lemma 2.13 shows that for every ε > 0 there is an R ≥ 0 large enough such that

∥∥1X∖NR(B)U∗1A

∥∥ < ε,

where NR(B) denotes the R-neighborhood of B. If t ∈ B(�2(B;H)) is a locally compact
operator, we deduce that

Ad(U)(t)1A = UtU∗1A = lim
R→∞

U
(
t1NR(B)

)
U∗1A

is compact, as it is the limit of compact operators. We may analogously show that 1AUtU∗

is compact as well. Since A and t are arbitrary, this proves that Ad(U) preserves local
compactness. □

Remark 4.4. — The containment Aut(C∗
Roe(X;H)) ⊆ Aut(C∗

cp(X;H)) is also
noted in [5, Corollary 4.3]. See [5, Remark 4.4] for an argument not using Theorem 4.1.

An operator T : �2(X;H) → �2(Y;H) is coarsely supported on a function f : X → Y
if and only if there is a constant R ≥ 0 such that 1yT1x �= 0 only if dY(f (x), y) ≤ R. If it
is important to keep track of the specific constant, we will say that T is R-supported on f .
The following refinement of Theorem A is the main technical result of this section.

Theorem 4.5. — Suppose H is infinite dimensional and U : �2(X;H) → �2(Y;H) is a

unitary implementing an isomorphism of C∗
Roe( - ;H) (equivalently, C∗

cp( - ;H)). Let f : X → Y be a

coarse equivalence constructed as in the proof of Theorem A. Then U is a norm limit of operators that are

coarsely supported on f .
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Proof. — Let p ∈ B(�2(X;H)) be a finite rank projection of the form

(4.1) p = px1 + · · · + pxn

where the xi ∈ X are distinct points and pxi
≤ 1xi

is a projection onto some finite dimen-
sional vector subspace Ei ≤H ∼= 1xi

(�2(X;H)). Observe that such a p has zero propaga-
tion. The following claim is the key place where we use the assumption that H be infinite
dimensional.

Claim 4.6. — For every ε > 0 there is some R ≥ 0 such that for every p as in (4.1) there exist

a unitary operator V ∈ B(�2(X;H)) of propagation zero and an operator t ∈ B(�2(X;H)) that is

R-supported on f satisfying ‖t − UVp‖ ≤ ε.

Proof of Claim 4.6. — By the construction of f , there are r ≥ 0 and δ > 0 such that
‖1f (x)U1B(x;r)‖ > δ for all x ∈ X. We may assume that ε < δ, and apply Lemma 2.13 on
norms of the form ‖1AU1x‖ ≤ ‖1AU1B(x;r)‖ to deduce that there is some R ≥ 0 large
enough so that for every x ∈ X we have

(4.2)
∥∥1

X∖B
(

f (x);R
)U1x

∥∥ ≤ ε.

Recall that p = px1 + · · · + pxn
. In the following, with a slight abuse of notation,

we are using 1xi
to denote both a projection in B(�2(X;H)) and in B(�2(X)). For each

i = 1, . . . , n, let Ci := X ∖ B(f (xi);R). We inductively construct unitary operators Vi ∈
B(H) as follows. For a fixed i, consider the finite dimensional subspace

Fi :=
〈
U∗1Ci

1Cj
U(1xj

⊗ Vj)(Ej) | 1 ≤ j < i
〉 ≤ �2(X;H);

and define Vi ∈ B(H) by arbitrarily choosing a unitary operator such that Vi(Ei) is or-
thogonal to 1xi

(Fi). Namely, Vi is chosen so that

(4.3) pxi

(
1xi

⊗ V∗
i

)
(Fi) = {0}.

Consider now the partial isometries 1xi
⊗ Vi ∈ B(�2(X;H)). We claim that the

operators 1Ci
U(1xi

⊗ Vi)pxi
are orthogonal to one another as i = 1, . . . , n varies. In fact,

it is clear that for every j < i

1Cj
U(1xj

⊗ Vj)pxj

(
1Ci

U(1xi
⊗ Vi)pxi

)∗

= 1Cj
U(1xj

⊗ Vj)pxj
pxi

(
1xi

⊗ V∗
i

)
U∗1Ci

= 0

(since pxj
pxi

= 0 when i �= j), and
(
1Ci

U(1xi
⊗ Vi)pxi

)∗
1Cj

U(1xj
⊗ Vj)pxj

= pxi

(
1xi

⊗ V∗
i

)(
U∗1Ci

1Cj
U(1xj

⊗ Vj)pxj

) = 0
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(from the choice of Vi , see (4.3)).
Observe that

V :=
n∑

i=1

Vi ⊗ 1xi
+ 1X∖{x1,...,xn},

is a unitary operator of propagation zero. Moreover, let

t :=
n∑

i=1

1
B
(

f (xi);R
)UVpxi

.

We claim that V and t satisfy our requirements. It is evident that t is R-supported on f ,
and we see that

‖t − UVp‖ =
∥∥∥∥∥

n∑

i=1

1
B
(

f (xi);R
)UVpxi

− UVpxi

∥∥∥∥∥
=

∥∥∥∥∥

n∑

i=1

1Ci
U(1xi

⊗ Vi)pxi

∥∥∥∥∥
.

Since these operators are orthogonal by construction, this norm is equal to the maximum
of ‖1Ci

U(1xi
⊗ Vi)pxi

‖, which is at most ε (cf. (4.2)). □

Fix now ε > 0. Choose a net (pλ)λ∈Λ of the form (4.1) that converges strongly to
1 ∈ B(�2(X;H)). Apply Claim 4.6 to obtain an R1 ≥ 0, unitaries (Vλ)λ∈Λ and operators
(tλ)λ∈Λ that are R1-supported on f and such that ‖tλ − UVλpλ‖ ≤ ε/2 for every λ ∈ Λ.
Since U is weakly approximately controlled and (Vλ)λ∈Λ all have propagation 0, there is
also an R2 > 0 such that for every λ ∈ Λ there is some sλ ∈ B(�2(X;H)), whose propa-
gation is bounded by R2, such that ‖UV∗

λU∗ − sλ‖ ≤ ε/2.
For convenience, we may also impose that each sλ be a contraction. It then follows

from the triangle inequality that

‖Upλ − sλtλ‖ = ∥∥(
UV∗

λU∗)(UVλpλ) − sλtλ
∥∥ ≤ ε.

Letting R := R1 + R2, observe that the operator sλtλ is R-supported on f . Since Upλ

converges to U in the strong operator topology, this shows that U is the strong limit of
operators that are within distance ε from operators that are R-supported on f . As the set

{
T ∈ B(�2(X;H))

∣∣∣
∃T′ ∈ B(�2(X;H)) R-supported on f

with
∥∥T − T′∥∥ ≤ ε

}

is closed in the strong operator topology (see the proof of [5, Proposition 3.7]), it follows
that U itself can be ε-approximated with an operator that is R-supported on f . □

Remark 4.7. — It is not hard to use Theorem 4.5 to prove Theorem 4.1 (under
the assumption that H be infinite dimensional).
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Let again H be infinite dimensional. As is well known, with any coarse equivalence
f : X → Y one can associate a unitary Uf : �2(X;H) → �2(Y;H) coarsely supported on
f (such a Uf is also said to cover f , see e.g. [31, Proposition 4.3.4]). This is straightforward
to see if f is a bijective coarse equivalence: then Uf (δx ⊗ h) := δf (x) ⊗ h defines a well-
behaved unitary covering f (this case even works if H is finite dimensional). In general,
one may find some coarsely dense X0 ⊆ X such that the restriction of f to X0 is injective,
and subsequently partition X and Y into sets {X(x0)}x0∈X0 and {Y(x0)}x0∈X0 of uniformly
bounded diameter such that x0 ∈ X(x0) and f (x0) ∈ Y(x0) for all x0 ∈ X0. In such setting,
one may choose bijections gx0 : X(x0) × N → Y(f (x0)) × N, since both these sets are
countably infinite. For every x ∈ X(x0), let gx0,1(x, n) ∈ Y(x0) and gx0,2(x, n) ∈ N be the
coordinates of gx0(x, n). Then the map

Uf (δx ⊗ en) := δgx0,1(x,n) ⊗ egx0,2(x,n),

where {en}n∈N ⊆ H is any orthonormal basis and x0 ∈ X0 is such that x ∈ X(x0), defines
the desired unitary.

Note that the construction of Uf involves highly non-canonical choices (the co-
bounded set X0, the partitions, the bijections. . . ). Nevertheless, it is not hard to show that
different choices give rise to unitaries that only differ by composition with some unitary
of controlled propagation. In turn, this shows that this procedure induces a canonically
defined group homomorphism

τ : CE(X) Out(C∗
cp(X))

[f ] [
Ad(Uf )

] ,

where

CE(X) := {f : X → X coarse equivalence}/closeness

(this is a group under composition). With a little more work, one can even show that τ is,
in fact, injective (cf. [5, Section 2.2] or [20, Theorem 7.18]). Using Theorem 4.5 we can
now show that it is even an isomorphism, proving Theorem B in the introduction.

Proof of Theorem B. — By the discussion above, all it remains to do is to check that

τ : CE(X) → Out(C∗
Roe(X)) = Out(C∗

cp(X))

is surjective. Let U ∈ B(�2(X;H)) be a unitary implementing an automorphism (of
C∗

Roe(X) or C∗
cp(X), see Proposition 4.3). By Theorem A, we can construct an associated

coarse equivalence f : X → X, and by Theorem 4.5 there exists a sequence of operators
Tn that are coarsely supported on f and converge to U in norm.

Fix some unitary W ∈ B(�2(X;H)) coarsely supported on f . Observe that if
1x′TnW∗1x �= 0 then there must be some x̄ ∈ X such that 1x′Tn1x̄W∗1x �= 0. Since W
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and Tn are both coarsely supported on f , it follows that both x′ and x are at uniformly
bounded distance from f (x̄). In particular, dX(x′, x) is uniformly bounded as x, x′ ∈ X
vary with 1x′TnW∗1x �= 0. This means precisely that for every fixed n ∈ N the operator
TnW∗ has bounded propagation. Now we are done, because U = (UW∗)W and

UW∗ = lim
n→∞ TnW∗

is therefore a unitary in C∗
cp(X), so [Ad(U)] = [Ad(W)] (in Out(C∗

Roe(X))). Moreover,
[Ad(W)] is in the image of τ by construction. □
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