Article
Stabilité structurelle du feuilletage de Jouanolou de degré 2
Publications Mathématiques de l'IHÉS, Tome 141 (2025), pp. 191-247

Nous démontrons que le feuilletage de Jouanolou de degré 2 sur le plan projectif complexe est structurellement stable. De plus, son ensemble de Fatou est une fibration holomorphe sur la quartique de Klein ayant une structure de fibré lisse localement trivial en disques. En particulier, aucune feuille de $\mathcal{J}_{2}$ n’est dense dans $\mathbf{P}^{2}$.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-024-00153-x
@article{PMIHES_2025__141__191_0,
     author = {Alvarez, Aur\'elien and Deroin, Bertrand},
     title = {Stabilit\'e structurelle du feuilletage de {Jouanolou} de degr\'e 2},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {191--247},
     year = {2025},
     publisher = {Springer International Publishing},
     address = {Cham},
     volume = {141},
     doi = {10.1007/s10240-024-00153-x},
     zbl = {08054050},
     language = {fr},
     url = {https://www.numdam.org/articles/10.1007/s10240-024-00153-x/}
}
TY  - JOUR
AU  - Alvarez, Aurélien
AU  - Deroin, Bertrand
TI  - Stabilité structurelle du feuilletage de Jouanolou de degré 2
JO  - Publications Mathématiques de l'IHÉS
PY  - 2025
SP  - 191
EP  - 247
VL  - 141
PB  - Springer International Publishing
PP  - Cham
UR  - https://www.numdam.org/articles/10.1007/s10240-024-00153-x/
DO  - 10.1007/s10240-024-00153-x
LA  - fr
ID  - PMIHES_2025__141__191_0
ER  - 
%0 Journal Article
%A Alvarez, Aurélien
%A Deroin, Bertrand
%T Stabilité structurelle du feuilletage de Jouanolou de degré 2
%J Publications Mathématiques de l'IHÉS
%D 2025
%P 191-247
%V 141
%I Springer International Publishing
%C Cham
%U https://www.numdam.org/articles/10.1007/s10240-024-00153-x/
%R 10.1007/s10240-024-00153-x
%G fr
%F PMIHES_2025__141__191_0
Alvarez, Aurélien; Deroin, Bertrand. Stabilité structurelle du feuilletage de Jouanolou de degré 2. Publications Mathématiques de l'IHÉS, Tome 141 (2025), pp. 191-247. doi: 10.1007/s10240-024-00153-x

[1.] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. E. Geometry of Algebraic Curves, Springer, Berlin, 1984

[2.] Asuke, T. A Fatou-Julia decomposition of transversally holomorphic foliations, Ann. Inst. Fourier, Volume 60 (2010), pp. 1057-1104 | MR | Zbl | Numdam | DOI

[3.] Bogomolov, F. Complex Manifolds and Algebraic Foliations, 1084, 1996

[4.] Bonatti, C.; Langevin, R.; Moussu, R. Feuilletages de 𝐏 n : de l’holonomie hyperbolique pour les minimaux exceptionnels, Publ. Math. IHES, Volume 75 (1992), pp. 123-134 | DOI | Zbl | Numdam

[5.] Brunella, M. Birational Geometry of Foliations, 2015 | DOI | Zbl

[6.] Camacho, C.; de Figueiredo, L. H. The dynamics of the Jouanolou foliation on the complex projective 2-space, Ergod. Theory Dyn. Syst., Volume 21 (2001), pp. 757-766 | MR | Zbl | DOI

[7.] Camacho, C.; Lins Neto, A.; Sad, P. Minimal sets of foliations on complex projective spaces, Publ. Math. IHES, Volume 68 (1988), pp. 187-203 | MR | Zbl | Numdam | DOI

[8.] Cerveau, D. Densité des feuilles de certaines équations de Pfaff à 2 variables, Ann. Inst. Fourier, Volume 33 (1983), pp. 185-194 | MR | DOI | Zbl | Numdam

[9.] Deroin, B.; Guillot, A. Foliated affine and projective structures, Compositio Math., Volume 159 (2023), pp. 1053-1187 | MR | Zbl | DOI

[10.] Deroin, B.; Kleptsyn, V. Random conformal dynamical systems, Geom. Funct. Anal., Volume 17 (2007), pp. 1043-1105 | MR | Zbl | DOI

[11.] Fisher, T.; Hasselblatt, B. Hyperbolic Flows, 25, 2020

[12.] Ghys, É. Sur les groupes engendrés par des difféomorphismes proches de l’identité, Bol. Soc. Bras. Mat., Volume 24 (1993), pp. 137-178 | DOI | Zbl

[13.] Ghys, É.; Gomez-Mont, X.; Saludes, J. Fatou and Julia components of transversely holomorphic foliations. Essays on geometry and related topics, Monogr. Enseign. Math., Volume 38 (2001), pp. 287-319 | Zbl

[14.] Haefliger, A. Foliations and Compactly Generated Pseudogroups Foliations : Geometry and Dynamics, World Scientific, Singapore, 2000, pp. 275-295 | Zbl

[15.] Hudaj-Verenov, M. O. A property of the solutions of a differential equation, Math. USSR Sb., Volume 56 (1962), pp. 301-308 (en russe) | MR | Zbl

[16.] Ilyashenko, Y. Global and local aspects of the theory of complex differential equations, Proc. Int. Cong. Math. Helsinski, 1978, pp. 821-828 | Zbl

[17.] Jouanolou, J.-P. Équations de Pfaff algébriques, 708, Springer, Berlin, 1979 | DOI | Zbl

[18.] Lins Neto, A. Algebraic solutions of polynomial differential equations and foliations in dimension two, Holomorphic Dynamics (1986), 1345, Springer, Berlin, 1988, pp. 192-232 | Zbl | DOI

[19.] Loray, F.; Rebelo, J. Minimal, rigid foliations by curves on 𝐏 n , J. Eur. Math. Soc., Volume 5 (2003), pp. 147-201 | DOI | Zbl

[20.] Mjuller, B. On the density of solutions of an equation in 𝐂𝐏 2 , Mat. Sb., Volume 98 (1975), pp. 325-338 | MR | Zbl | DOI

[21.] Nakai, I. Separatrices for nonsolvable dynamics on C 0, Ann. Inst. Fourier, Volume 44 (1994), pp. 569-599 | MR | DOI | Zbl | Numdam

[22.] Oka, M. On mixed projective curves, Singularities in Geometry and Topology (2009), 20, 2012, pp. 133-147 | Zbl | DOI

[23.] Robinson, C. Structural stability manifolds with boundary, J. Differ. Equ., Volume 37 (1980), pp. 1-11 | MR | DOI | Zbl

[24.] Scherbakov, A. A. On the density of an orbit of a pseudogroup of conformal mappings and a generalization of the Hudai-Verenov theorem, Vestn. Mosk. Univ. Math., Volume 31 (1982), pp. 10-15

[25.] Takeuchi, A. Domaines Pseudo-Convexes dans les variétés Kählériennes, J. Math. Kyoto Univ., Volume 6 (1967), pp. 323-357 | MR | Zbl

Cité par Sources :