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RÉSUMÉ

Nous démontrons que le feuilletage de Jouanolou de degré 2 sur le plan projectif complexe est structurellement
stable. De plus, son ensemble de Fatou est une fibration holomorphe sur la quartique de Klein ayant une structure de fibré
lisse localement trivial en disques. En particulier, aucune feuille de J2 n’est dense dans P2.
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1. Introduction et énoncé du théorème principal

Soit Fd l’espace des feuilletages algébriques complexes de degré d sur le plan pro-
jectif complexe P2. Mieux comprendre la décomposition de la variété projective Fd sui-
vant les propriétés dynamiques et topologiques des feuilletages algébriques reste un pro-
blème largement ouvert dès que d ≥ 2. Le présent travail se propose d’y apporter une
contribution nouvelle et, en un certain sens, inattendue.

Dans un travail célèbre [16], présenté lors de l’ICM 1978 et qui repose en partie
sur les articles de Hudaj-Verenov [15] et Mjuller [20], Il’yashenko démontre que presque
tout (vis-à-vis de la mesure de Lebesgue) feuilletage de Fd qui contient une droite projec-
tive invariante est structurellement rigide, ergodique et minimal. Ce travail a inspiré de
nombreux auteurs, parmi lesquels Scherbakov [24], Cerveau [8], Ghys [12], Nakai [21],
Camacho et de Figueiredo [6], ainsi que Loray et Rebelo [19]. Ces derniers montrent
qu’il existe un ouvert non vide de Fd formé de feuilletages structurellement rigides, mi-
nimaux, et ergodiques, en s’affranchissant de l’hypothèse portant sur l’existence d’une
droite projective invariante.

Le résultat que nous présentons ici s’oppose radicalement à tous ces travaux : nous
exhibons une composante de stabilité non triviale dans F2, c’est-à-dire un ouvert formé de
feuilletages tous topologiquement conjugués les uns aux autres ; de plus, nous montrons
que les feuilletages appartenant à cette composante de stabilité n’ont aucune feuille dense
et ne sont pas ergodiques. Plus précisément, on désigne par Jd le champ de vecteurs de
Jouanolou de degré d défini dans les coordonnées cartésiennes (x, y, z) de C3 par

(1.1) Jd(x, y, z) = yd ∂

∂x
+ zd ∂

∂y
+ xd ∂

∂z
.

Ce champ est homogène de degré d et définit donc un feuilletage Jd du plan projectif
complexe. Jouanolou a montré dans [17] que Jd n’a pas de feuille algébrique invariante
lorsque d ≥ 2 et qu’il en est ainsi pour un feuilletage générique de Fd .

Théorème. — Le feuilletage J2 du plan projectif complexe P2 est structurellement stable. De

plus, son ensemble de Fatou est une fibration1 sur la quartique de Klein ayant une structure de fibré lisse

localement trivial en disques. En particulier, aucune feuille de J2 n’est dense dans P2.

Dire que le feuilletage J2 est structurellement stable signifie qu’il existe un voisi-
nage V de J2 dans F2 tel que tout feuilletage dans V est topologiquement conjugué à J2.
Le lieu de stabilité dans F2 est par définition l’ensemble des feuilletages algébriques struc-
turellement stables. Nous conjecturons que, modulo l’action de PGL3(C), l’application
qui, à un feuilletage du domaine de stabilité de F2 associe le quotient de son domaine
de Fatou, est un revêtement de l’espace des modules des courbes algébriques lisses de
genre 3.

1 Nous appelons fibration un morphisme surjectif à fibres connexes entre deux variétés complexes.
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FIGURE 1. — Intersection de l’ensemble de Julia du feuilletage de Jouanolou de degré 2 avec une sphère entourant une
singularité

Concernant l’ensemble de Julia, défini comme le complémentaire de l’ensemble
de Fatou, nous conjecturons qu’il est de mesure nulle2 et transversalement un ensemble
de Cantor (figure 1). Cette conjecture, étayée par des expérimentations numériques (sec-
tion 13), impliquerait que le feuilletage de Jouanolou est intégrable en dehors d’un en-
semble fermé de mesure nulle.

Nous montrons également que les feuilles du feuilletage J2 sont simplement
connexes, sauf un nombre dénombrable d’entre elles qui sont des anneaux (section 9.3).
En vertu du théorème principal ci-dessus, nous sommes donc en mesure de valider la
conjecture d’Anosov (qui décrit ainsi la topologie des feuilles pour un feuilletage géné-
rique du plan projectif complexe) pour des feuilletages appartenant à un ouvert non vide
de F2.

Nous remercions chaleureusement Serge Cantat, Dominique Cerveau, Yulij Ilya-
shenko, Étienne Ghys, Alexey Glutsyuk, Xavier Gomez-Mont, Adolfo Guillot, Samuel
Lelièvre, Frank Loray, Jorge Pereira, Bruno Sévennec pour les nombreuses discussions
que l’on a pu avoir à propos de ce travail. Nous remercions également le rapporteur pour
sa relecture très soigneuse qui nous a notamment permis de préciser la rédaction de plu-
sieurs points techniques, ainsi que d’ajouter une démonstration alternative (corollaire 9.6)
et la remarque 9.7.

2 En utilisant les propriétés d’hyperbolicité que nous établissons dans cet article, il suffirait de montrer que l’en-
semble de Julia est d’intérieur vide pour en déduire qu’il est de mesure nulle.
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2. Stratégie pour démontrer le théorème de stabilité structurelle

Un feuilletage algébrique complexe F de degré d du plan projectif complexe est
le projectivisé du feuilletage FV de C3 défini par un champ de vecteurs V homogène
de degré d que l’on peut toujours supposer de divergence nulle (lemme 4.1). De plus, le
lieu des points où V et le champ radial R sont colinéaires est une union finie de droites
vectorielles qui définissent l’ensemble singulier S de F . Dans la suite, on considère un
feuilletage F défini par un champ homogène V de degré d , de divergence nulle et qui ne
s’annule pas sur C3 \ {0}.

Commençons par énoncer un critère qui assure l’existence d’un ensemble errant
pour le feuilletage F (section 5). Sur chaque feuille de FV, considérons la restriction
de la fonction − log‖ · ‖, où ‖ · ‖ est la norme hermitienne standard. Il s’agit d’une
fonction strictement sur-harmonique, sauf le long des feuilles radiales de FV où elle est
harmonique. Ses points critiques définissent l’ensemble algébrique réel B̃ := {R · V = 0},
où · désigne le produit hermitien. Les points de B̃ sont non dégénérés d’indice égaux à 1
ou 2 suivant que |DV(V) · R| > ‖V‖2 ou |DV(V) · R| < ‖V‖2 (lemme 4.6). Notre critère
met en jeu la propriété suivante.

Propriété PB (déf. 4.7) : Le champ V ne s’annule pas sur C3 \ {0} et les points critiques de la

restriction de la fonction − log‖ ·‖ le long des trajectoires de V dans C3 \{0} sont non dégénérés d’indice

égaux à 2.

Sous l’hypothèse PB, la variété algébrique réelle B̃ ⊂ C3 \ {0} est lisse et transverse
au feuilletage FV ; par conséquent la surface algébrique réelle B := Π(B̃) ⊂ P2 est une
section transverse3 au feuilletage F . Une telle section transverse hérite d’une structure
holomorphe induite par la structure holomorphe transverse du feuilletage F ([3]).

Proposition 2.1. — Si V satisfait la propriété PB, alors les trajectoires de V passant par les

points de B̃ sont des disques proprement plongés dans C3 et l’union de ces trajectoires est un fibré lisse

localement trivial en disques au-dessus de B̃.

La démonstration de la première partie de cette proposition se trouve au para-
graphe 5. L’étude de la décomposition Fatou/Julia est faite à la partie 7 et celle de la
topologie des sections transverses des feuilletages de P2 à la partie 11.

L’un des outils principaux est l’étude du gradient de la fonction − log‖ · ‖ le long
des trajectoires du champ V vis-à-vis d’une métrique hermitienne sur les feuilles de FV

qui est invariante par multiplication par les scalaires (section 4.2) : le champ de vecteurs W̃
ainsi construit sur C3 \ {0} induit un champ de vecteurs analytique réel W sur P2 appelé
le champ réel (section 4.3). Il est par définition tangent à F et s’annule sur l’union de
l’ensemble B et de l’ensemble singulier de F . Observons que sous l’hypothèse PB, les

3 Une section transverse à un feuilletage est une sous-variété réelle transverse au feuilletage et de dimension égale
à la codimension réelle du feuilletage.
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points de B sont des puits pour W en restriction à chaque feuille de F . Ainsi, B est un
attracteur pour le champ réel W.

Ce champ réel joue également un rôle central pour établir la stabilité structurelle
lorsque la propriété PB ainsi que la propriété de répulsion PS suivante sont satisfaites :

Propriété PS (déf. 4.10) : Le champ V ne s’annule pas sur C3 \ {0}, les singularités du feuille-

tage F sont hyperboliques et chacune de ces singularités est une source pour le champ réel W.

Proposition 2.2. — Un feuilletage algébrique de degré d de P2 qui satisfait les propriétés PB

et PS est structurellement stable. En d’autres termes, tout feuilletage algébrique F ′ de degré d qui est

suffisamment proche de F est topologiquement conjugué à F .

On commence par démontrer que l’ensemble errant construit à la proposition 2.1
est exactement l’ensemble de Fatou. La stabilité structurelle de l’ensemble de Fatou dé-
coule alors de la proposition 2.1 (la propriété PB est stable). La stabilité structurelle de
l’ensemble de Julia du feuilletage repose sur des propriétés d’hyperbolicité du champ W.
Ces propriétés sont établies dans la partie 6 : on construit une métrique complète sur
P2

∗ = P2 \ (B ∪ S) pour laquelle le feuilletage stable faible de W est le feuilletage F , alors
que le feuilletage instable faible4 est un feuilletage réel de dimension 3 transverse à F .
Nous en déduisons la stabilité structurelle de W par un théorème de Robinson [23], ainsi
que la stabilité structurelle de l’ensemble de Julia du feuilletage F qui est aussi l’ensemble
d’attraction de l’ensemble non errant de W dans P2

∗. Il faut ensuite recoller les morceaux
pour établir la stabilité structurelle globale. Pour cela, nous construisons une action loca-
lement libre du groupe affine sur P2

∗ dont les orbites sont les feuilles de la restriction de F
à P2

∗ (section 9). La stabilité structurelle est établie à la partie 10.
Pour conclure, nous montrons que le champ de Jouanolou en degré 2 satisfait

les propriétés PB et PS puis, en utilisant les symétries du feuilletage, que la surface B est
biholomorphe à la quartique de Klein (proposition 12.8). La propriété PS est élémentaire
et est établie au lemme 12.2. La propiété PB est plus délicate à établir : il s’agit de montrer
que, étant donné trois nombres complexes quelconques x, y, z ∈ C non tous nuls, on a
l’implication suivante

(2.1) xy2 + yz2 + zx2 = 0 =⇒ 2
∣
∣x̄yz2 + ȳzx2 + z̄xy2

∣
∣ < |x|4 + |y|4 + |z|4.

À la partie 12, nous ramenons la démonstration de (2.1) à la vérification d’un nombre
fini d’inégalités explicites sur des entiers que l’on peut confier à un ordinateur.

4 Il s’agit d’un feuilletage réel de codimension 1 sur P2
∗, dont la distribution tangente est continue, dont les feuilles

sont C∞, qui est le produit du feuilletage de Reeb par une droite au voisinage de chaque point de S et, localement, un livre
ouvert au voisinage des points de B.
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3. Notations

– P2 plan projectif complexe
– Π : C3 \ {0} → P2 application quotient
– (x, y, z) · (x′, y′, z′) = xx′ + yy′ + zz′ produit hermitien standard sur C3

– V champ de vecteurs homogène sur C3

– J2 champ de Jouanolou sur C3 (éq. (1.1))
– FV feuilletage induit par V
– F quotient de FV sur P2

– J2 feuilletage de P2 induit par J2

– TF fibré tangent holomorphe à F
– TRF fibré tangent réel à F (défini sur la partie régulière rég(F) de F )
– NF fibré normal holomorphe à F
– NRF fibré normal réel à F (défini sur rég(F))
– g métrique hermitienne sur TF (section 4.2)
– g̃ métrique relevée sur TFV (éq. (4.2))
– W̃ gradient le long des trajectoires de FV de la fonction − log‖ · ‖
– W champ de vecteurs de P2 obtenu comme projection de W̃, appelé champ réel
– {Φt

W}t∈R flot induit par W
– NFW := TRF/RW
– B section transverse (éq. (4.4))
– UB voisinage tubulaire de B
– S ensemble singulier de F
– US voisinage tubulaire de S
– P2

∗ = P2 \ (B ∪ S)

– PB : voir déf. 4.7
– PS : voir déf. 4.10
– FA : restriction de F à la sous-variété A, i.e. défini par la distribution TA ∩ TRF
– R feuilletage de ∂US transverse à F∂US

– h métrique riemannienne sur P2
∗ adaptée à W

– F−−
W , F−

W, F++
W , F+

W feuilletages stable fort, stable faible, instable fort, instable
faible du champ W (section 8.5)

– D saturé de B par le feuilletage F appelé ensemble errant de F (section 5)
– F(F), J(F) ensembles de Fatou et de Julia de F (section 7)
– RépW(□) = {p | limt→−∞ d(Φt

W(p),□) = 0} : ensemble de répulsion de □ pour
le champ W

– AttW(□) = {p | limt→+∞ d(Φt
W(p),□) = 0} : ensemble d’attraction de □ pour le

champ W
– K = P2 \ (RépW(S) ∪ AttW(B)) : ensemble hyperbolique maximal (éq. (8.18))
– WR reparamétrage du champ W (éq. (9.2))
– hH métrique hyperbolique sur TRF|P2∗ (éq. (9.9))
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– π : Aff+(R) × P2
∗ → P2

∗ action du groupe affine (éq (9.7))
– πp = π(·, p) paramétrage des feuilles par Aff+(R) (éq (9.8))
– V′ perturbation de V, F ′ feuilletage induit par V′, W′ champ réel induit par V′

(section 10.1)
– ψ : P2

∗ → P2
∗
′ conjugaison topologique orbitale de W à W′ (prop. 10.2)

– Ψ : P2
∗ → P2

∗
′ modification de ψ

– β ⊂ F bande (i.e. composante connexe de F \ AttW(K)) (section 10.2)
– l : B → B′ homéomorphisme proche de l’identité (éq. (10.2))

4. Le champ réel et les propriétés PB et PS

4.1. Feuilletages de P2. — Le plan projectif complexe P2 admet un fibré tangent
holomorphe TP2 dont les sections locales sont les champs de vecteurs holomorphes lo-
caux sur P2. Il admet également un fibré tangent réel TRP2 dont les sections sont les
champs de vecteurs réels. Un champ de vecteurs holomorphe s’étend naturellement en
une dérivation agissant sur les fonctions lisses à valeurs complexes. La partie réelle de
cette extension définit une dérivation réelle, c’est-à-dire un champ de vecteurs réel. Le
flot induit par la partie réelle d’un champ de vecteurs holomorphe s’obtient par restric-
tion du flot induit par ce dernier aux temps réels, modulo le facteur multiplicatif 1/2. On
a un isomorphisme réel naturel entre le fibré tangent holomorphe et le fibré tangent réel,
induit par l’application qui à un champ de vecteurs holomorphe associe sa partie réelle.

Un feuilletage algébrique complexe de P2 est la donnée d’un morphisme m :
TF → TP2 d’un fibré en droites holomorphe TF au-dessus de P2 qui s’annule au-dessus
d’un ensemble fini de P2 ([5]). Le fibré TF s’appelle le fibré tangent holomorphe de F , le
lieu où m s’annule l’ensemble singulier S de F et son complémentaire la partie régulière
rég(F). Par définition, le degré d de F est le nombre de tangence de m(TF) avec une
droite générique de P2 et on a alors TF �O(1 − d).

Nous dirons qu’un champ de vecteurs holomorphe défini sur un ouvert de P2

définit F s’il est l’image par m d’une section de TF qui ne s’annule en aucun point.
Dans la partie régulière du feuilletage, les extensions analytiques maximales des germes
de courbes intégrales d’un champ de vecteurs holomorphe définissant F forment des
courbes holomorphes immergées dans P2 appelées les feuilles de F .

Dans la partie régulière de F , les feuilles sont tangentes à la distribution TRF ⊂
TRP2|rég(F) définie comme l’image par l’identification naturelle TP2 → TRP2 du sous-
fibré m((TF)|rég(F)) ⊂ TP2|rég(F) ; observons que TRF est naturellement isomorphe à la
restriction du fibré tangent holomorphe TF à l’ensemble régulier de F .

De même, on définit le fibré normal NF de F comme étant le dual du fibré associé
au faisceau des 1-formes holomorphes sur P2 contenant m(TF) dans leur noyau (ce
faisceau est localement libre et donc bien associé à un fibré en droites holomorphe [5]).
Dans la partie régulière de F , ce fibré en droites s’identifie à TP2/m(TF) et donc au
fibré normal réel NRF := TRP2/TRF via l’identification naturelle TP2 → TRP2.
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4.2. Projectivisation d’un champ homogène et métrique sur TF .

Lemme 4.1. — Étant donné un feuilletage F sur P2 de degré d, il existe un champ de vecteurs V
holomorphe homogène de degré d sur C3, de divergence nulle et tel que la projectivisation du feuilletage

FV induite par V sur C3 \ {0} est le feuilletage F . Ce champ est unique modulo multiplication par une

constante non nulle et il est colinéaire au champ radial seulement dans un nombre fini de directions de C3

dont les projectivisations sont les singularités de F .

Démonstration. — L’existence d’un champ de vecteurs V homogène de degré d , ra-
dial uniquement au-dessus du lieu singulier de F et tel que la projectivisation de FV est
égale à F , se trouve dans [18]. Pour assurer que l’on peut trouver un tel champ V qui
soit de plus à divergence nulle, il suffit de considérer le champ

V − div(V)

d + 2
R,

où R = x ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
est le champ radial. L’unicité est évidente. □

On rappelle que le fibré tautologique O(−1) s’identifie à C3 \ {0} en dehors de sa
section nulle. Le fibré tangent TF de F s’identifie alors à la puissance (d − 1)-ième du
fibré tautologique via l’application homogène de degré (d − 1)

(4.1) p ∈ C3 \ {0} �→ DpΠ
(

V(p)
) ∈ TΠ(p)F

définie en dehors du lieu singulier de F . Dans cette formule, Π désigne l’application
quotient C3 \ {0} → P2.

On notera g̃ la métrique5 sur TFV définie par

(4.2) g̃p

(

V(p)
) = ‖p‖2d−2.

Cette métrique est invariante par multiplication par les scalaires sur C3 \ {0} et définit
donc une métrique hermitienne sur TF que l’on note g.

Lemme 4.2. — On suppose que V ne s’annule pas sur C3 \ {0} et que d ≥ 2. Munies de la

métrique hermitienne g̃, les feuilles de FV sont des surfaces complètes à courbure strictement négatives,

sauf les feuilles radiales qui sont isométriques à des cylindres bi-infinis euclidiens R2/lZ avec l > 0.

Démonstration. — Si g est une métrique hermitienne sur une surface de Riemann, sa
courbure s’exprime par −Δg log‖V‖g où V est un champ de vecteurs holomorphe local
qui ne s’annule pas. La formule (4.2) montre donc que la courbure de la métrique g̃ le long
des feuilles de FV est donnée par l’expression −Δg̃ log‖p‖d−1. Or la fonction log‖p‖d−1

5 Cette métrique est singulière aux points où V s’annule.
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est pluri-sous-harmonique, et strictement dans les directions autres que radiales, ce qui
montre que la courbure de la restriction de g̃ aux feuilles de FV est strictement négative.

Pour montrer la complétude, il suffit de constater que, si l’on introduit la métrique
hermitienne standard g0 sur C3, on a l’inégalité α‖p‖2d ≤ g0(V)p ≤ β‖p‖2d valable pour
certaines constantes α,β > 0 indépendantes de p. Par conséquent, on obtient

α′ g0

‖ · ‖2
≤ g̃ ≤ β ′ g0

‖ · ‖2

avec c′ = 1/β et d ′ = 1/α. La complétude de g en restriction aux feuilles de FV découle
de celle de la métrique g0

‖·‖2 sur C3 \ {0}.
La dernière assertion du lemme vient de ce que les feuilles radiales de FV sont

topologiquement des cylindres et que toutes les métriques plates complètes sur de telles
surfaces sont isométriques à des cylindres euclidiens bi-infinis. □

4.3. Définition du champ réel. — Introduisons la fonction f : C3 \ {0} → R définie
par f (p) := − log‖p‖2. Son gradient le long des feuilles de FV, vis-à-vis de la métrique
hermitienne g̃, est un champ de vecteurs W̃ sur C3 \ {0}. Pour tout scalaire non nul λ ∈
C∗, on a f (λ ·) = − log |λ|2 + f (·), ce qui montre que dF f est invariante par multiplication
par les scalaires et, par conséquent, qu’il en est de même pour W̃. Il existe donc un champ
de vecteurs analytique W sur P2 tel que, pour tout p ∈ C3 \ {0}, on a DpΠ(W̃(p)) =
W([p]) : ce champ est appelé le champ réel.

Lemme 4.3. — On a W̃ = �(ρ̃V), où ρ̃(p) = −2 (p·V(p))

‖p‖2d pour tout p ∈ C3 \ {0}.

Démonstration. — Introduisons la métrique hermitienne g1 sur TFV telle que
g1(V) = 1. Autrement dit, si l’on paramètre la feuille passant par le point p0 de C3 \ {0}
par la courbe intégrale t �→ p(t) de l’équation ṗ = V(p) passant par p(0) = p0, alors la mé-
trique g1 est la métrique hermitienne standard |dt|2. Comme g̃(V) = h avec h = ‖ · ‖2d−2

(voir (4.2)), on en déduit g̃ = hg1 puis la formule

(4.3) W̃ = ∇g̃ f = h−1∇g1 f .

Or dans la coordonnée t décrite plus haut, on a

dF log‖p‖2 = 2
�((p · V(p))dt)

‖p‖2
,

ce qui montre que

∇g1 f = −�
(

2(p · V(p))

‖p‖2
V

)

.

Le lemme découle de (4.3). □
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Corollaire 4.4. — Le champ W s’annule sur l’union de l’ensemble singulier S de F et du lieu

défini par

(4.4) B := Π
({R · V = 0}).

De plus, si d �= 1, alors B est non vide.

Démonstration. — D’après le lemme 4.3, {R · V = 0} ∪ Π−1(S) est le lieu où W̃ est
tangent à la distribution radiale complexe. Si B est vide, alors W ne s’annule pas dans
la partie régulière de TF . On en déduit que TF � O(1 − d) est trivial en restriction à
P2 \ S, donc d = 1. □

Remarque 4.5. — Sauf pour certains champs de vecteurs non génériques (e.g. V =
x∂x + 2y∂y + 3z∂z), on montre que B est également non vide dans le cas d = 1. Nous
verrons par ailleurs que pour les feuilletages satisfaisant les propriétés PB et PS, alors B
est homologue à 1−d fois la classe d’une droite. Notons enfin que B est une courbe mixte
de bidegré (1, d) (voir [22] pour l’étude générale des courbes mixtes).

4.4. Les singularités de W le long des feuilles et la propriété PB. — Le résultat suivant
donne des informations sur la nature des singularités du champ W le long des feuilles,
c’est-à-dire en chaque point de l’ensemble B défini par (4.4). On rappelle qu’une singu-
larité d’un champ de vecteurs sur une variété est une source si toutes les valeurs propres
complexes du champ en cette singularité ont une partie réelle strictement positive, une
selle si les parties réelles des valeurs propres sont non nulles et certaines de signes opposés,
et un puits si toutes les valeurs propres sont de parties réelles strictement négatives.

Lemme 4.6. — En restriction à une feuille de F , une singularité p de W

– est un puits ssi ‖V‖2 > |DV(V) · R| sur Π−1(p) ;

– est une selle ssi ‖V‖2 < |DV(V) · R| sur Π−1(p) ;

– n’est jamais une source.

Dans ce lemme, on rappelle que p · p′ = xx′ + yy′ + zz′ est le produit hermitien
standard sur C3, R = x ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
le champ radial, D la connexion standard sur TC3.

Observons alors que si l’on note V = ∑

k∈{x,y,z} Vk
∂

∂k
, DV(V) est le champ de vecteurs

défini par

DV(V)k =
∑

l∈{x,y,z}
Vl

∂Vk

∂ l
pour k ∈ {x, y, z}.

Démonstration. — Étant donné une fonction lisse ϕ : C → R, on rappelle qu’un
point critique t0 est
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– dégénéré ssi | ∂2ϕ

∂ t∂ t
| = | ∂2ϕ

∂ t2
| en t0 ;

– d’indice 2 ssi ∂2ϕ

∂ t∂ t
< −| ∂2ϕ

∂ t2
| en t0 ;

– d’indice 1 ssi | ∂2ϕ

∂ t∂ t
| < | ∂2ϕ

∂ t2
| en t0 ;

– d’indice 0 ssi ∂2ϕ

∂ t∂ t
> | ∂2ϕ

∂ t2
| en t0.

Dans le cas non dégénéré, le gradient de ϕ (vis-à-vis d’une métrique conforme quel-
conque) est un puits dans le premier cas, une selle dans le deuxième et une source dans
le troisième.

On applique alors ceci à la fonction f = − log‖ · ‖2 en restriction à la feuille FV(p̃)

de FV passant par un relevé de p. En effet, le champ W̃ est le gradient de la restriction
de f à FV. Un calcul facile donne

∂2f

∂ t2
= −DV(V) · R

‖R‖2
+ (V · R)2

‖R‖4
et

∂2f

∂ t∂ t
= −‖V‖2

‖R‖2
+ |R · V|2

‖R‖4
.

Puisque (R · V)(p̃) = 0, on en déduit que la singularité p est

– un puits ssi ‖V‖2 > |DV(V) · R| en p̃ ;
– une selle ssi ‖V‖2 < |DV(V) · R| en p̃ ;
– n’est jamais une source. □

Définition 4.7 (Propriété PB). — Un feuilletage du plan projectif complexe vérifie la propriété PB

si le champ V ne s’annule pas sur C3 \ {0} et si les singularités du champ W le long des feuilles de F
sont des puits.

Lemme 4.8. — Supposons que F vérifie la propriété PB. Si B est non vide, alors B est une section

transverse à F qui admet un voisinage tubulaire UB tel que, d’une part le feuilletage en restriction à UB

est un fibré lisse localement trivial en disques et, d’autre part, il existe un difféomorphisme UB \ B →
R≥0 × ∂UB tel que le champ W est égal au champ ∂

∂ t
dans les coordonnées (t, q) ∈ R≥0 × ∂UB.

Démonstration. — Sur C3 \ {0}, les points critiques de la fonction f = − log‖.‖ en
restriction à chaque feuille de FV sont non dégénérés : Π−1(B) étant le lieu des points où
la différentielle de f le long des feuilles de FV est nulle, il s’agit d’une section transverse
du feuilletage FV. En effet, l’application C3 \ {0} → TRFV

∗ qui à un point associe la
restriction de la différentielle de f au fibré tangent TRFV (dans une trivialisation locale de
TRFV

∗) est un difféomorphisme local le long des feuilles au voisinage d’un point critique
de f le long de FV si et seulement si le point critique est non dégénéré le long de sa feuille.
La projection B de Π−1(B) dans P2 est donc également une section transverse de F .

On construit UB en considérant l’application expF : (TRF)|B → P2 qui asso-
cie à un vecteur v ∈ TR

b F l’extrémité expF(v) := γ (1) de la géodésique γ : [0,1] →
(F(b), g) partant de γ (0) = b dans la direction dγ

dt
(0) = v. On déduit du théorème

des fonctions implicites que si ε > 0 est suffisamment petit, la restriction de expF à
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{v ∈ (TRF)|B | ‖v‖ ≤ ε} est un difféomorphisme sur son image. De plus, par hypo-
thèse, les valeurs propres de W en restriction à TR

b F sont toutes les deux strictement
négatives en tout point b ∈ B, donc par compacité de B, si l’on choisit ε > 0 suffisam-
ment petit, toute trajectoire de W partant d’un point de UB \ B converge vers un point
de B dans le futur et intersecte ∂UB en un unique point. En choisissant un tel ε > 0, on
conclut la démonstration du lemme en associant à un point r de UB \ B l’unique couple
(t, q) ∈ R≥0 × ∂UB où q est l’intersection de la trajectoire de W passant par r avec ∂UB et
où t est l’unique réel positif tel que Φt

W(q) = r. □

4.5. Étude de W au voisinage d’une singularité de F et propriété PS.

Lemme 4.9. — En une singularité de F en laquelle V ne s’annule pas, le champ de vecteurs W
est égal à la partie réelle d’un champ de vecteurs holomorphe Y définissant F à l’ordre un, c’est-à-dire que

(4.5) W = �(Y) + termes d’ordre supérieur à 2.

Démonstration. — Soit s ∈ P2 une singularité de F . Quitte à permuter les coordon-
nées, on peut supposer que s appartient à la carte affine {z �= 0}, isomorphe à C2 via
l’isomorphisme (x, y, z) �→ (u = x/z, v = y/z). Le feuilletage F est défini par le champ de
vecteurs X = Xu

∂

∂u
+ Xv

∂

∂v
, où

(4.6) X = (

Vx(u, v,1) − uVz(u, v,1)
) ∂

∂u
+ (

Vy(u, v,1) − vVz(u, v,1)
) ∂

∂v
.

Dans les coordonnées (u, v), on a également W = �(Wu
∂

∂u
+ Wv

∂

∂v
), où

Wu(u, v) = W̃x(u, v,1) − uW̃z(u, v,1),

Wv(u, v) = W̃y(u, v,1) − vW̃z(u, v,1)

et où les fonctions W̃k pour k ∈ {x, y, z} sont définies par l’équation

W̃ = �
(

W̃x

∂

∂x
+ W̃y

∂

∂y
+ W̃z

∂

∂z

)

.

Or le lemme 4.3 nous donne l’expression W̃k = ρ̃Vk , où ρ̃(p) = −2 (p·V(p))

‖p‖2d . En vertu de
(4.6), on en déduit l’expression W = �(ρX) où ρ(u, v) = ρ̃(u, v,1) et le résultat en dé-
coule en posant Y = ρ(s)X puisque par hypothèse ρ(s) �= 0. □

Nous adopterons la définition suivante : une singularité s de F est hyperbolique si
les valeurs propres d’un champ définissant F au voisinage de s ne sont pas R-colinéaires.

Définition 4.10 (Propriété PS). — Un feuilletage F du plan projectif complexe vérifie la pro-

priété PS si V ne s’annule pas sur C3 \ {0} et si chaque singularité de F est d’une part hyperbolique et

d’autre part une source pour le champ W.
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Si les valeurs propres d’un champ de vecteurs holomorphe Y en une singularité s

sont λ et μ, alors celles de sa partie réelle W = �(Y) sont λ/2, μ/2, λ/2, μ/2. Ainsi, s

est une source pour le champ W si et seulement si �(λ) et �(μ) sont strictement positifs.

Lemme 4.11. — Soit F un feuilletage du plan projectif qui vérifie la propriété PS. Alors pour

tout s ∈ S, il existe un voisinage Us de s à bord lisse et un difféomorphisme Us \ {s} → R≤0 × ∂Us

qui envoie le champ W sur le champ horizontal ∂

∂ t
dans les coordonnées (t,Q) ∈ R≤0 × ∂Us.

Le feuilletage F est transverse à ∂Us ; son intersection avec ∂Us définit donc un feuilletage trans-

versalement holomorphe F∂Us
par courbes réelles de ∂Us. Ce dernier admet deux feuilles circulaires et,

dans leur complémentaire, il est difféomorphe à un produit de la courbe elliptique Es = C/(Zλ + Zμ)

par un intervalle.

De plus, il existe un feuilletage lisse par surfaces R sur ∂Us qui est transverse à F∂Us
, et qui est

homéomorphe au feuilletage de Reeb de la sphère dans chaque composante de ∂US.

Démonstration. — Soit Y le champ construit au lemme 4.9. Le théorème de linéari-
sation de Poincaré montre qu’il existe des coordonnées (u, v) centrées en s telles que

Y = λu
∂

∂u
+ μv

∂

∂v
,

où λ et μ sont les valeurs propres de Y. D’après l’hypothèse PS, ces dernières étant de
partie réelle strictement positive, il existe r > 0 tel que en notant h = |u|2 + |v|2, on a
dh(W(q)) > 0 pour tout q �= s dans la boule Us := {|u|2 + |v|2 ≤ r2}. En particulier, toute
trajectoire du flot induit par W issue d’un point q ∈ Us \ {s} tend vers s lorsque le temps
tend vers −∞, et aboutit à un point Q(q) de ∂Us en un temps t(q) ≥ 0. L’application
q ∈ Us \ {s} �→]−t(q),Q(q)[∈ R≤0 × ∂Us est un difféomorphisme qui envoie le champ
W sur le champ ∂

∂ t
.

Les deux feuilles circulaires sont les intersections des séparatrices {u = 0} et {v = 0}
avec la sphère ∂Us. En dehors de ces dernières, on a une intégrale première

(4.7)
1

2iπ
(λ logv − μ log u)

à valeurs dans E dont les fibres intersectent ∂Us sur des intervalles. C’est cette intégrale
première qui confère à la restriction de F∂Us

la structure de fibré au-dessus de E par
intervalles.

Construisons à présent le feuilletage R. Considérons la fonction ρ égale à ρ = |u|2
sur ∂Us. Les niveaux ρ = 0 et ρ = r2 sont les deux feuilles circulaires. Par contre, tous
les autres niveaux ρ−1(ρ0) pour ρ0 ∈]0, r2[ sont des sections transverses toriques à F∂Us

.
Nous allons définir le feuilletage R via ρ sur ρ−1([ε, r2 − ε]) pour ε > 0 suffisamment
petit et modifier ce fibré dans les deux tores pleins ρ−1([0, ε]) et ρ−1([r2 − ε, r2]) par la
méthode du tourbillonnement de Reeb.

Expliquons cette construction dans le tore plein T = ρ−1([0, ε]), dans l’autre tore
la construction étant similaire. Orientons F∂Us

en le voyant comme le bord du feuilletage
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par surfaces de Riemann F sur la boule Us. Le long des feuilles de F∂Us
ainsi orientées, la

fonction ρ est croissante si �(μ

λ
) > 0 et décroissante si �(μ

λ
) < 0. Introduisons le fibré en

disques θ : T → R/2πZ définie par θ(u, v) = Arg(v), fonction croissante sur les feuilles
de F∂Us

. Étant donné une fonction lisse ψ : [0, r2] → R≥0 qui vaut 1 sur un voisinage de
l’origine et qui s’annule sur [ε, r2], le feuilletage défini par

ψ(ρ)dθ − Im
(

λ

μ

)
(

1 − ψ(ρ)
)

dρ = 0

est alors transverse au flot et coïncide avec le fibré donné par ρ sur un voisinage de
ρ−1(ε). □

5. Construction d’un ensemble errant

Le but de cette partie est d’établir l’existence d’un ensemble errant ([13] et sec-
tion 7) pour les feuilletages vérifiant la propriété PB.

Théorème 5.1. — Supposons que F vérifie la propriété PB. Alors le saturé de B par F est un

ouvert D ⊂ P2 sur lequel le feuilletage est une fibration sur B ayant une structure de fibré lisse localement

trivial en disques.

Démonstration. — En tant que section transverse au feuilletage F , on rappelle que
la surface B hérite d’une structure holomorphe ([3]). Soit AttW(B) l’ensemble d’attrac-
tion de B, c’est-à-dire l’ensemble des points q ∈ P2 tels que Φt

W(q) tend vers un point
de B lorsque t tend vers +∞ ; il s’agit d’un ensemble invariant par ΦW, contenant le voi-
sinage tubulaire UB de B construit au lemme 4.8, et chaque trajectoire de ΦW contenue
dans AttW(B) \ B intersecte ∂UB en un unique point. Ainsi, AttW(B) est un fibré lisse
localement trivial en disques au-dessus de B dont les fibres sont les ensembles d’attraction

AttW(b) =
{

q ∈ P2
∣
∣ lim

t→+∞ Φt
W(q) = b

}

pour b ∈ B,

et la projection AttW(B) → B est holomorphe.
Remarquons que pour tout b ∈ B, AttW(b) est contenu dans la feuille F(b) du

feuilletage F passant par b. Nous allons en fait voir que AttW(b) =F(b) ce qui permettra
de conclure la démonstration du théorème.

Lemme 5.2. — La croissance de la fonction f = − log‖ · ‖2 le long d’une portion de trajectoire

de W̃ contenue dans Π−1(P2 \ Int(UB)) est linéaire avec une constante uniforme. En d’autres termes,

il existe un réel a > 0 tel que pour tout p ∈ Π−1(P2 \ Int(UB)) et tout t ≥ 0 tel que Φs

W̃
(p) ∈

Π−1(P2 \ Int(UB)) pour tout s ∈ [0, t],
f
(

Φt

W̃
(p)

) ≥ at + f (p).
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Démonstration. — Si p ∈ Π−1(P2 \ Int(UB)), alors toute la trajectoire {Φt

W̃
(p)}t≤0 est

contenue dans Π−1(P2 \ Int(UB)). Or, comme V ne s’annule pas sur C3, le champ W̃
ne s’annule pas dans Π−1(P2 \ Int(UB)) (on observera que, même si W s’annule en
chaque singularité de F , le champ W̃ ne s’annule pas sur Π−1(S)). Ainsi, la quantité
df (W̃) = ‖W̃‖2

g̃ est strictement positive en tout point de Π−1(P2 \ Int(UB)). Cette der-
nière étant invariante par multiplication par les scalaires et P2 \ Int(UB) étant compact,
elle est minorée par une constante a > 0 sur Π−1(P2 \ Int(UB)). Le lemme en résulte
immédiatement. □

Soit b ∈ B et p ∈ C3 \ {0} tel que Π(p) = b. La restriction de Π à la feuille FV(p)

de FV passant par p est un revêtement abélien Πp : FV(p) → F(b) et la restriction
au domaine d’attraction AttW̃(p) = {p′ | limt→+∞ Φt

W̃
(p′) = p} est un difféomorphisme

AttW̃(p) → AttW(b). Or le lemme 5.2 montre que la restriction de f à AttW̃(p) est propre,
ce qui établit que FV(p) = AttW̃(p), et par conséquent

F(b) = Πp

(

FV(p)
) = Πp

(

AttW̃(p)
) = AttW(b). □

6. Hyperbolicité de W : partie I

Nous nous donnons un feuilletage algébrique F de P2 qui satisfait les propriétés PB

et PS.

6.1. Hyperbolicité longitudinale. — On considère dans ce paragraphe le fibré en
droites réelles au-dessus de P2

∗ défini par

(6.1) NFW := TRF/RW.

Comme le flot ΦW associé à W laisse invariantes les distributions TRF et RW, il se re-
lève naturellement en un flot agissant sur NFW via sa différentielle. La métrique her-
mitienne g sur TF que l’on a définie au paragraphe 4.2 induit une métrique g sur
TRF � TF dans la partie régulière de F et une métrique gW,F sur NFW définie par

(6.2) gW,F
([v]) := ∣

∣volg(v,W)
∣
∣

pour tout q ∈ P2
∗ et tout [v] ∈ NFW. Dans cette formule, volg désigne la forme volume

sur TRF induite par la métrique hermitienne g.

Lemme 6.1. — La métrique gW,F sur NFW est strictement contractée par le flot DΦW, c’est-

à-dire que pour tout q ∈ P2
∗, tout vecteur non nul [v] ∈ (NFW)q et tout réel t > 0 on a

gW,F
([

DΦt
W(v)

])

< gW,F
([v]).
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Démonstration. — On a pour tout q ∈ P2
∗ et tout couple de vecteurs v,w ∈ TR

q F

d

dt t=0
volg

(

DΦt
W(v),DΦt

W(w)
) = div(W)(q) volg(v,w),

où div(W) désigne la divergence de W le long des feuilles vis-à-vis de la métrique g.
En posant w = W(q), et en remarquant que DΦt

W(W(q)) = W(Φt
W(q)), on s’aper-

çoit que le résultat est équivalent à montrer que div(W) < 0. Or si q = [p], on a
div(W)(q) = div(W̃)(p) et le champ W̃ est le gradient de la fonction p �→ − log‖p‖2

qui est strictement pluri-sur-harmonique en dehors des directions radiales de V, ce qui
conclut la démonstration du lemme. □

6.2. Calcul de la connexion de Bott de F et hyperbolicité transverse. — Le fibré normal
NF à F est un fibré en droites holomorphe au-dessus de P2 qui, dans la partie régulière
de F , s’identifie au quotient NF = TP2/m(TF) ([5]). Ce fibré est muni d’une connexion
feuilletée, c’est-à-dire d’une connexion définie uniquement dans la direction du feuille-
tage ([9, section 2.1]), appelée la connexion de Bott et notée ∇Bott . Dans la partie régulière
où le feuilletage est défini par τ = cst dans des coordonnées feuilletées (z, τ ), la connexion
de Bott s’exprime par

(6.3) ∇Bott

([

α
∂

∂τ

])

= dFα ⊗
[

∂

∂τ

]

pour toute fonction holomorphe α.
D’un autre coté, le champ V induit une connexion feuilletée ∇V sur le fibré tau-

tologique O(−1) dont les sections plates en restriction à chaque feuille sont les courbes
intégrales du champ V. Cette connexion induit une connexion ∇k

V le long des feuilles sur
toutes les puissances O(k) du fibré tautologique.

Lemme 6.2. — Si V est de divergence nulle, il existe un isomorphisme entre NF et O(d + 2)

qui envoie la connexion de Bott ∇Bott sur la connexion ∇d+2
V .

Démonstration. — D’après le théorème d’extension d’Hartogs, il suffit de démontrer
le lemme sur P2 \ S. Soit G le feuilletage de C3 \ Π−1(S) dont la distribution tangente est

TG = CR ⊕ CV,

où R désigne le champ radial. En d’autres termes, G = Π∗F . Si NG désigne le fibré
normal à G, on a donc Π∗NF = NG. Pour p ∈ C3 \ Π−1(S), la forme linéaire sur C3

ϕp(·) = det
(

R(p),V(p), ·)

a pour noyau TpG et définit donc une forme linéaire non nulle sur NpG. Ces formes
linéaires vérifient

ϕλp(λu) = det
(

R(λp),V(λp), λu
) = λd+2ϕp(u),



STABILITÉ STRUCTURELLE DU FEUILLETAGE DE JOUANOLOU DE DEGRÉ 2 207

pour tous λ ∈ C∗, p ∈ C3 \ Π−1(S) et u ∈ NpG. On construit ainsi une application
O(−1) → NG∗

(6.4) p ∈O(−1)[p] �→ ϕp ∈ NpG∗ � N[p]F∗

qui est (d + 2)-homogène et qui induit un isomorphisme entre O(d + 2) et NF .
Dans ce qui suit on montre que la connexion de Bott sur NF est envoyée sur

la connexion ∇d+2
V sur O(d + 2) par cet isomorphisme. Rappelons que ces connexions

sont définies dans la direction des feuilles uniquement. Pour calculer la connexion de
Bott, observons que le flot local ΦV associé au champ de vecteurs V préserve G et, par
conséquent, si [v] ∈ NpG, alors la section de NG le long de la feuille FV(p) passant par p

définie par

(6.5) t ∈ (C,0) �→ v(t) = [

DΦt
V(v)

] ∈ Np(t)G

est plate. Dans cette formule, on paramètre le germe de feuille (FV(p), p) par le germe
de surface de Riemann (C,0) via t �→ p(t) = Φt

V(p). Or DΦt
V(V) = V et, puisque V est

homogène, il existe une fonction β telle que DΦt
V(R) = R + βV. On a alors

ϕp(t)(vt) = det
(

DΦt
V

(

R
(

p(t)
))

,DΦt
V

(

V
(

p(t)
))

,DΦt
V(v)

))

et, puisque V est de divergence nulle, on en déduit la relation

ϕp(t)(vt) = det
(

R(p),V(p), v
) = ϕp(v).

Ceci exprime exactement que la connexion induite par le champ V sur O(−(d + 2)) est
envoyée sur la connexion de Bott sur NF∗ par l’application (6.4). □

Dans la partie régulière de F , définissons le fibré normal réel

NRF := TRP2/TRF .

L’isomorphisme TP2 � TRP2 induit un isomorphisme NF |P2\S � NRF qui échange les
connexions de Bott sur ces deux fibrés. Il fournit également une structure de fibré lisse en
droites complexes sur NRF .

Corollaire 6.3. — Il existe une métrique hermitienne gN sur le fibré normal NRF qui, en dehors

de B ∪ S, est strictement dilatée par le flot induit par W. Plus précisément, si UB désigne le voisinage

de B construit dans la démonstration du théorème 5.1, il existe une constante b > 0 telle que, pour tout

Π(p) ∈ P2
∗ et tout réel t ≥ 0 tels que la trajectoire Φ

[0,t]
W (Π(p)) est contenue dans P2 \ Int(UB), on a

pour tout [v] ∈ NR
Π(p)F ,

(6.6) gN

([

DΦt
W(v)

]) ≥ exp(bt)gN

([v]).
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Démonstration. — On définit la métrique gN comme étant l’image de la métrique
sur O(d + 2) induite par la métrique hermitienne standard sur C3 par la composi-
tion de l’isomorphisme O(d + 2) → NF défini par (6.4) et de l’isomorphisme naturel
(NF)|P2\S → NRF . Les sections plates de la connexion induite par V sur O(−1) le long
des courbes intégrales de W sont les courbes intégrales de W̃. Or le lemme 5.2 montre
que

(6.7)
∥
∥Φt

W̃
(p)

∥
∥

2 ≤ exp(−at)‖p‖2.

Le corollaire s’ensuit en vertu du lemme 6.2. □

7. La décomposition de Fatou/Julia

Dans [13], Ghys, Gomez-Mont et Saludes associent à un feuilletage F de P2 ayant
des singularités hyperboliques une partition de P2 en un ensemble de Fatou FGGS(F) et
un ensemble de Julia JGGS(F). Ils donnent également une classification des composantes
de FGGS(F) en trois familles, l’une d’elles correspondant aux composantes errantes. Un
point de vue alternatif a ensuite été développé par Asuke [2] qui associe une décomposi-
tion Fatou/Julia à un pseudo-groupe Γ de transformations holomorphes agissant sur une
surface de Riemann T ayant la propriété de génération compacte.

Rappelons que la propriété de génération compacte, introduite par Haefliger [14],
stipule qu’il existe un ouvert relativement compact T′ ⊂ T qui intersecte toutes les or-
bites de Γ et que, de plus, la restriction Γ|T′ de Γ à T′ est engendrée par un nombre
fini d’éléments γk ∈ Γ|T′ , chacun se prolongeant en un élément γ̃k ∈ Γ dont le domaine
de définition dans T contient l’adhérence du domaine de définition de γk dans T′. Le
pseudo-groupe Γ′ = Γ|T′ est appelé une réduction de Γ. Il est toujours possible de trou-
ver une réduction telle que T′ soit biholomorphe à une réunion finie de disques dans C,
ce que nous ferons par la suite.

Un ouvert U ⊂ T′ est un ouvert de Fatou si tout germe de Γ′ en un point de U
se prolonge en un élément de Γ′ défini sur U. L’ensemble de Fatou est l’orbite par Γ de
l’union des ouverts de Fatou contenu dans une réduction Γ′ de Γ et il est indépendant
de la réduction choisie. L’ensemble de Julia est son complémentaire. On remarque que
l’hypothèse de normalité dans la définition de l’ensemble de Fatou est ici automatique
d’après le lemme de Schwarz car on a supposé que T′ est une réunion finie de disques
dans C ([2, Remark 2.8]).

Le pseudo-groupe d’holonomie d’un feuilletage holomorphe sur une surface com-
plexe compacte, dont les singularités sont hyperboliques, est de génération compacte
([13]). L’ensemble de Fatou FA(F) d’un tel feuilletage F au sens d’Asuke est l’union
des feuilles correspondant aux points de l’ensemble de Fatou du pseudo-groupe d’holo-
nomie du feuilletage dans sa partie régulière ; l’ensemble de Julia JA(F) de F au sens
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d’Asuke est son complémentaire. Notons que, d’après [2, Proposition 4.2], nous avons

FGGS(F) ⊂ FA(F).

Il nous sera utile dans ce qui suit de connaître le critère suivant pour qu’un point
appartienne à l’ensemble de Julia au sens d’Asuke d’un feuilletage holomorphe F sur
une surface complexe compacte avec des singularités hyperboliques : étant donné une
métrique hermitienne sur le fibré normal au feuilletage et un compact contenu dans la
partie régulière, regardons l’ensemble des applications d’holonomie d’un germe de trans-
versale en notre point vers une transversale en un point de ce compact. Si les dérivées de
ces applications d’holonomie en notre point forment un ensemble non borné, alors notre
point appartient à l’ensemble de Julia.

Proposition 7.1. — Soit F un feuilletage holomorphe sur P2 satisfaisant les propriétés PB

et PS. Alors les ensembles de Fatou FGGS(F) et FA(F) sont tous les deux égaux au domaine errant D
construit au théorème 5.1.

Démonstration. — Comme D ⊂ FGGS(F) ⊂ FA(F), il suffit donc de montrer que le
complémentaire de D est contenu dans JA(F). Soit p ∈ P2 \ D. Si ce point est singulier,
il appartient à JGGS(F) et à JA(F) par définition. S’il est régulier, son orbite positive
{Φt

W(p)}t≥0 par le flot induit par le champ W ne peut s’approcher ni de B (car sinon p

appartiendrait au domaine errant), ni de S (car ces dernières sont des sources pour W).
Ainsi, d’après le corollaire 6.3, le logarithme de la dérivée de l’holonomie du feuilletage F
en p le long du chemin {Φt

W(p)}0≤t≤T croît linéairement et on en déduit la propriété
suivante : l’ensemble des dérivées en p des applications appartenant au pseudo-groupe
d’holonomie de la restriction du feuilletage au complémentaire d’un certain voisinage de
l’ensemble singulier de F est non borné. Ainsi p appartient à JA(F). □

Dans la suite, pour un feuilletage F de P2 satisfaisant les propriétés PB et PS, nous
noterons F(F) et J(F) ses ensembles de Fatou et de Julia qui donnent une décomposition
non triviale de P2 dès que d ≥ 2 (F(F) �= ∅ d’après le corollaire 4.4 et J(F) contient au
moins l’adhérence des séparatrices).

8. Hyperbolicité de W : partie II

Dans cette partie, nous poursuivons l’étude d’un feuilletage algébrique complexe F
de P2 satisfaisant les propriétés PB et PS ; en particulier, nous construisons les feuilletages
stables et instables, faibles et forts, du champ W dans le complémentaire P2

∗ de l’ensemble
B ∪ S. Nous introduisons aussi l’ensemble hyperbolique K dont l’ensemble d’attraction
est l’ensemble de Julia privé de S.
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8.1. Une métrique riemannienne sur P2
∗ adaptée à W. — Soit UB le voisinage de B

construit au lemme 4.8. À partir d’une métrique riemannienne h∂UB sur ∂UB, nous
construisons une métrique riemannienne h sur UB \ B en posant

(8.1) h = dt2 + e−2th∂UB,TRF + e2th⊥
∂UB,TRF ,

où les métriques h∂UB,TRF et h⊥
∂UB,TRF ont respectivement pour noyau (TRF ∩ T∂UB)

⊥ et
TRF ∩ T∂UB, et vérifient h∂UB = h∂UB,TRF + h⊥

∂UB,TRF . Dans l’équation (8.1) la coordon-
née t a été définie au lemme 4.8 et prend ses valeurs dans [0,+∞[.

Soit US le voisinage de S construit au lemme 4.11. On définit une métrique h

dans US \ S en partant d’une métrique lisse h∂US sur ∂US pour laquelle TRF ∩ T∂US est
orthogonal au feuilletage R (lemme 4.11) et on pose

(8.2) h = dt2 + e−2th∂US,TRF + e2th⊥
∂US,TRF ,

où les métriques h∂US,TRF et h⊥
∂US,TRF ont respectivement pour noyau (TRF ∩ T∂US)

⊥ =
TR et TRF ∩ T∂US, et vérifient h∂US = h∂US,TRF + h⊥

∂US,TRF . Dans l’équation (8.2) la
coordonnée t a été définie au lemme 4.11 et prend ses valeurs dans ]−∞,0].

Pour terminer, nous étendons la métrique h en une métrique riemannienne lisse
sur P2

∗ de façon arbitraire et nous notons hW,F et hN les métriques induites par h sur les
fibrés NFW et NR

F respectivement.

Lemme 8.1. — On a

sup
p∈P2∗, t∈[−1,1]

∥
∥DΦt

W(p)
∥
∥

h
< +∞.

D’autre part, il existe des constantes a, b, c, d > 0 telles que, pour tout t ∈ R et pour tout v ∈ NFW,

(8.3) c exp(−at)hW,F(v) ≤ hW,F
(

DΦt
W(v)

) ≤ d exp(−bt)hW,F(v),

et, pour tout w ∈ NR
F ,

(8.4) c exp(bt)hF(w) ≤ hN

(

DΦt
W(w)

) ≤ d exp(at)hF(w).

Démonstration. — La proposition est satisfaite pour une trajectoire qui reste dans
l’un des voisinages UB \ B ou US \ S (avec constantes c = d = 1 et a = b = 2 par construc-
tion de la métrique h). Elle est également satisfaite pour une trajectoire restant dans le
compact P2 \ (UB ∪ US), d’après le lemme 6.1 et le corollaire 6.3. Comme le long d’une
trajectoire quelconque, il ne peut y avoir que deux transitions entre ces deux régimes, le
résultat en découle. □

8.2. Un lemme classique. — Le résultat suivant est bien connu mais, n’ayant pas
trouvé l’énoncé sous cette forme dans la littérature, nous le redémontrons.
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Lemme 8.2. — Soit E → X un fibré vectoriel réel de dimension finie au-dessus d’un espace

topologique X, muni

– d’un flot continu d’automorphismes Ψ̂ = {Ψ̂t}t∈R induisant un flot Ψ = {Ψt}t∈R agissant

sur X,

– et d’une métrique continue et définie positive | · |.
Supposons qu’il existe un sous-fibré continu Ψ̂-invariant E ⊂ E et écrivons

(8.5) Ψ̂t =
(

αt γt

0 δt

)

relativement à la décomposition E = E ⊕ E⊥. Enfin, supposons que

(8.6) sup
p∈X, t∈[−1,1]

∥
∥Ψ̂t(p)

∥
∥ < +∞,

et qu’il existe des constantes a, c > 0 telles que, pour tout p ∈ X et tout t ∈ R, on ait

(8.7)
∥
∥αt(p)

−1
∥
∥ ≤ c et

∥
∥δt(p)

∥
∥ ≤ c exp(−at),

pour la norme d’opérateur associée à | · |. Alors, l’ensemble F formé des éléments f ∈ E tels que

(8.8) lim
t→+∞

∥
∥Ψ̂t(f )

∥
∥ = 0

est un sous-fibré vectoriel continu de E tel que

– E = E ⊕ F et l’angle entre E et F est uniformément minoré,

– F est Ψ̂-invariant,

– et la quantité supp∈X ‖(Ψ̂t(p))|F‖ tend vers 0 exponentiellement vite lorsque t tend vers +∞.

Démonstration. — Compte-tenu de (8.6), il suffit de démontrer le lemme pour des t

entiers, ce que nous allons donc faire. Choisissons f ∈ F au-dessus d’un point p0 de X et,
pour tout t ∈ R, notons pt = Ψt(p0), ft = Ψ̂t(f ), et décomposons ft = et + e⊥t avec et ∈ E et
e⊥t ∈ E⊥. On a alors

(8.9) e0 = −αt(p0)
−1γt(p0)e

⊥
0 + αt(p0)

−1et.

Le second membre du terme de droite tend vers 0 lorsque t tend vers +∞. Étudions plus
en détail le premier membre. En posant

(8.10) ut(p0) := αt(p0)
−1γt(p0) ∈ Hom

(

E⊥
p0
,Ep0

)

,

la relation de cocycle Ψ̂t(ps) = Ψ̂t−1(ps+1) ◦ Ψ̂1(ps) nous donne

(8.11) ut(p0) = u1(p0) + α1(p0)
−1u1(p1)δ1(p0) + · · · + αt−1(p0)

−1u1(pt−1)δt−1(p0).
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En utilisant (8.6) et (8.7), on obtient que le terme de droite de cette expression est la
somme partielle d’une série normalement convergente, ce qui montre que ut(p0) admet
une limite u∞(p0) lorsque t tend vers +∞, qui dépend continûment de p0 et dont la
norme est bornée uniformément. Comme d’après (8.9), on a e0 = −ut(p0)e

⊥
0 + αt(p0)

−1et ,
on obtient l’expression

(8.12) e0 = −u∞(p0)e
⊥
0 .

Réciproquement, supposons que f = e0 + e⊥0 , où e0 et e⊥0 sont des éléments de E et E⊥

respectivement, qui vérifient (8.12). On a alors en manipulant (8.9)

(8.13) et = αt(p0)
(

e0 + αt(p0)
−1γt(p0)e

⊥
0

) = αt(p0)
(

ut(p0) − u∞(p0)
)

e⊥0 .

Or

(8.14) αt(p0)
(

u∞(p0) − ut(p0)
) =

(
∑

k≥0

αk(pt)
−1u1(pt+k)δk(pt)

)

δt(p0),

donc d’après (8.13) et (8.14), on obtient

‖et‖ ≤ c′ exp(−at)
∥
∥e⊥0

∥
∥

pour une constante c′ indépendante de p0, t ou encore f . On a aussi
∥
∥e⊥t

∥
∥ = ∥

∥δt(p0)e
⊥
0

∥
∥ ≤ c exp(−at)

∥
∥e⊥0

∥
∥,

ce qui montre bien que ft = et + e⊥t converge vers 0 (et de plus exponentiellement vite).
On a donc bien montré que F est le graphe du morphisme continu de sous-fibrés de E

e⊥ ∈ E⊥
p �→ −u∞(p)e⊥ ∈ Ep,

ce qui achève la démonstration du lemme puisque u∞ est bornée. □

8.3. Les distributions stables et instables du flot W.

Proposition 8.3. — Il existe une décomposition DΦW-invariante et continue

(8.15) TRP2
∗ = TF−−

W ⊕ RW ⊕ TF++
W

où TRF|P2∗ = TF−−
W ⊕RW. Les angles entre les facteurs de la décomposition (8.15) sont uniformément

minorés pour la métrique h. De plus, il existe des constantes a, b, c, d > 0 telles que, pour tout t ∈ R et

pour tout v ∈ TF−−
W ,

(8.16) c exp(−at)h(v) ≤ h
(

DΦt
W(v)

) ≤ d exp(−bt)h(v),

et, pour tout w ∈ TF++
W ,

(8.17) c exp(bt)h(w) ≤ h
(

DΦt
W(w)

) ≤ d exp(at)h(w).
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Démonstration. — On applique (8.3) ainsi que le lemme 8.2 au fibré E = TRF , au
flot Ψ̂ := DΦW et au sous-fibré E = RW. On obtient l’existence d’un sous-fibré continu
TF−−

W ⊂ TRF de dimension réelle 1, qui est uniformément exponentiellement contracté
par le flot DΦW.

On applique maintenant (8.4) ainsi que le lemme 8.2 au fibré E = TRP2, au flot Ψ̂

défini par Ψ̂t := DΦ−t
W pour tout t ∈ R et au sous-fibré E = TRF , pour obtenir l’existence

d’un sous-fibré continu TF++
W ⊂ TRP2 de dimension réelle 2, transverse à TRF , qui est

uniformément exponentiellement contracté par le flot Ψ̂ . □

Remarque 8.4. — Par construction de la métrique h au voisinage des singularités
de F , la distribution TF−−

W est l’intersection TRF ∩ T∂UB en restriction à ∂UB. De
même la distribution TF++

W est le fibré tangent du feuilletage de Reeb R en restriction
à US.

8.4. Ensemble hyperbolique maximal. — Une excellente référence pour cette section
est [11]. Pour toute singularité s ∈ S, on note RépW(s) le bassin de répulsion de s, à savoir
l’ensemble des points dont la trajectoire par le flot ΦW dans le passé converge vers s. Il
s’agit d’un ouvert de P2, puisque chaque singularité de F est une source (propriété PS).
On notera RépW(S) l’union des bassins de répulsion des singularités de F .

Rappelons que l’ensemble errant D, l’ensemble de Fatou F(F) et l’ensemble d’at-
traction AttW(B) de B sont tous les trois égaux (théorème 5.1 et proposition 7.1). Intro-
duisons l’ensemble

(8.18) K := P2 \ (

AttW(B) ∪ RépW(S)
)

.

Il s’agit d’un compact de P2
∗ qui est invariant par le flot ΦW. On remarque que l’ensemble

de W-attraction de K défini par

(8.19) AttW(K) :=
{

p ∈ P2
∣
∣ lim

t→+∞ d
(

Φt
W(p),K

) = 0
}

est l’ensemble de Julia de F privé des singularités et que l’ensemble de W-répulsion de K
défini par

(8.20) RépW(K) :=
{

p ∈ P2
∣
∣ lim

t→−∞ d
(

Φt
W(p),K

) = 0
}

est le complémentaire dans P2
∗ de l’ensemble de répulsion de S.

Proposition 8.5. — L’ensemble K est un compact hyperbolique ΦW-invariant maximal.

Démonstration. — Ceci découle de l’hyperbolicité de W sur P2
∗ vis-à-vis de la mé-

trique h construite au paragraphe 8.1. La maximalité découle de ce que toute orbite qui
n’est pas dans K tend vers l’infini dans P2

∗ par définition même de K. □
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Corollaire 8.6. — Les ensembles de W-attraction (resp. de W-répulsion) de K sont des unions

de variétés stables faibles (resp. instables faibles) de points de K.

Démonstration. — C’est une conséquence de la proposition 8.5 et de [11, Theo-
rem 5.3.25]. □

Corollaire 8.7. — L’ensemble des orbites périodiques de W est dénombrable.

Démonstration. — Comme K est hyperbolique, pour tout T > 0, les orbites pério-
diques de périodes bornées par T sont isolées. Par compacité de K, il n’y en a qu’un
nombre fini. □

8.5. Les feuilletages stables et instables de W. — Un feuilletage de classe C1,0 de di-
mension k d’une variété M de classe C1 est un feuilletage topologique de dimension k

de M dont les feuilles sont des sous-variétés immergées de classe C1 de M qui dépendent
de façon continue du paramètre transverse dans la topologie C1. Plus précisément, un
tel feuilletage est la donnée d’un atlas de cartes continues {ϕi : Ui → Bk × Bn−k}i∈I, où Bk

est la boule unité de dimension k, dont les changements de cartes préservent les hori-
zontales et tel que {ϕ−1

i (·, τ )}τ∈Bn−k est une famille d’immersions de classe C1 qui dépend
continûment de τ dans la topologie C1 sur les compacts. Un feuilletage de classe C1,0 de
dimension k admet une distribution tangente qui est une distribution continue de rang k

de TM : elle est définie sur chaque ouvert Ui comme l’image de Ui ×Rk par l’application
(p, v) �→ (p,D|ϕi(p)ϕ

−1
i (v)).

Proposition 8.8. — Il existe des uniques feuilletages F−−
W , F−

W, F++
W , F+

W sur P2
∗ de classe

C1,0 ayant pour distributions tangentes

TF−−
W , TF−

W = TF−−
W + RW, TF++

W , TF+
W = TF++

W + RW.

La démonstration de cette proposition est l’objet des sous-sections suivantes.

8.5.1. Un critère d’intégrabilité d’une distribution continue.

Lemme 8.9. — Soit (M, h) une variété riemannienne complète et D ⊂ TM une distribution

continue de rang k. On suppose donnée une famille {F(p)}p∈M de sous-variétés de classe C1 de dimen-

sion k immergées dans M, tangentes à D, et telle que

– (unicité) pour tout point p de M, p appartient à F(p) et le germe défini par (F(p), p) est

l’unique germe de variété de classe C1 tangente à D et de dimension k ;

– (complétude) la restriction de h à chaque F(p) est complète.

Alors il existe un unique feuilletage de classe C1,0 dont la distribution tangente est égale à D et ses feuilles

sont les variétés F(p).
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Démonstration. — Nous dirons qu’une coordonnée (x, y) : U → Bk × Bn−k de
classe C1 sur M est D-adaptée si, dans cette coordonnée, la distribution D est le graphe
d’une famille {Dp}p∈Bk×Bn−k d’applications linéaires Dp : Rk → Rn−k de normes d’opé-
rateurs inférieures à 1/3 pour les normes euclidiennes standard. Tout point admet un
voisinage sur lequel est définie une telle coordonnée.

Dans une coordonnée adaptée, considérons un point p situé dans la bi-boule Bk
1/3 ×

Bn−k
1/3 , où Bk

r ⊂ Rk est la boule euclidienne de rayon r centrée en l’origine. Les propriétés
de complétude et d’unicité, ainsi que le choix du point p, montre que la composante de
F(p) ∩ U est le graphe y = fp(x) d’une application fp : Bk → Bn−k de classe C1. En effet,
écrivons p = (x0, y0). Comme la coordonnée est adaptée, le germe F(p) en p est le graphe
d’un germe d’application fp : (Bk, x0) → (Bn−k, y0) de classe C1. On notera r > 0 un rayon
tel que fp est défini sur la boule B(x0, r). Considérons un vecteur unitaire v ∈ Rk et le
chemin γ (t) = x0 + tv ; il existe un réel maximal tmax tel que γ ([0, tmax[⊂ Bk et tel que le
germe fp s’étend sur un voisinage de B(x0, r)∪γ ([0, tmax[) en une application de classe C1

dont le graphe est contenu dans F(p). L’existence d’un tel réel maximal résulte de la
propriété d’unicité. Supposons par l’absurde que γ (tmax) appartient à l’intérieur de Bk .
Puisque F(p) est tangente à D et que les coordonnées sont adaptées, le prolongement
de fp ◦ γ à [0, tmax[ est 1/3-lipschitzienne et admet donc une limite en tmax appartenant à
Bn−k . De plus, l’inégalité triangulaire montre que le graphe de fp est relativement compact
dans Bk × Bn−k . Les métriques euclidiennes et h sont donc comparables à des constantes
multiplicatives près le long du graphe de fp, ce qui implique que (γ (t), fp(γ (t))) admet
une limite dans F(p) lorsque t tend vers tmax, à cause de la propriété de complétude. La
limite appartient à l’ouvert U et, en cette limite, le germe de variété F(p) est décrit par
le graphe d’un unique germe d’application de classe C1. On peut donc étendre fp sur un
voisinage de B(x0, r) ∪ γ ([0, tmax]), contradiction. Ces extensions de fp le long des rayons
partant de x0 dans Bk fournissent une extension de fp définie sur Bk satisfaisant la propriété
souhaitée.

Étant constituée d’applications 1/3-lipschitziennes, la famille {fp}p∈Bk
1/3×Bn−k

1/3
est

équicontinue, donc relativement compacte dans la topologie uniforme sur les compacts.
Les graphes de ces applications de classe C1 étant tangents à la distribution D, la famille
{fp}p∈Bk

1/3×Bn−k
1/3

est en fait relativement compacte dans la topologie C1 sur les compacts. On
déduit alors de la propriété d’unicité que l’application qui à p associe fp est continue pour
la topologie C1 sur fp.

Les coordonnées feuilletées du feuilletage sont définies par p �→ (x(p), fp(0)) : il
s’agit d’homéomorphismes locaux d’inverses donnés par (x, y) �→ (x, f(0,y)(x)) : le feuille-
tage est donc bien de classe C1,0. □

8.5.2. Construction du feuilletage instable fort. — Nous allons appliquer le lemme 8.9
à la distribution stable forte TF++

W ; il suffit donc de définir une famille de sous-variétés
immergées F++

W (p) tangentes à TF++
W pour p ∈ P2

∗ et vérifier qu’elle satisfait les proprié-
tés de complétude et d’unicité. Nous allons le faire dans l’ensemble de répulsion de S
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puis dans l’ensemble de répulsion de K séparément (rappelons que ces deux ensembles
forment une partition de P2

∗).
Par construction (section 8.1), la distribution instable forte TF++

W de W est tan-
gente à ∂US et s’intègre sur cette hypersurface en le feuilletage R construit au lemme
4.11. Pour tout point p appartenant à l’ensemble de répulsion de S, il existe un réel t

et un point q dans ∂US tels que p = Φt
W(q) ; on pose alors F++

W (p) := Φt
W(R(q)). La

variété immergée F++
W (p) est donc une feuille du feuilletage (Φt

W)∗R de l’hypersurface
Φt

W(∂US) qui est compacte ; la propriété de complétude du lemme 8.9 est donc satis-
faite. Dans l’ensemble de répulsion de S, la distribution TF++

W est lisse et intégrable : le
théorème de Frobenius fournit l’unicité d’un germe de variété intégrable.

Si le point p est situé dans le complémentaire de l’ensemble de répulsion de S,
c’est-à-dire dans l’ensemble de répulsion de K, il existe un point q dans K tel que p

appartient à la feuille instable forte F++
W (q) du point q (corollaire 8.6). On pose alors

F++
W (p) := F++

W (q). Lorsque t tend vers −∞, la dérivée du flot Φt
W contracte chaque

vecteur de TF++
W (q) exponentiellement vite ([11]) ; la sous-variété immergée F++

W (p) =
F++

W (q) est donc tangente à TF++
W . Montrons que les variétés immergées F++

W (p), munies
de la métrique h sont complètes. D’après [11, Theorem 5.3.25], il existe une famille
de disques compacts δr ⊂ F++

W (r) pour r dans K qui dépend de façon continue de r

dans la topologie lisse (en particulier ils contiennent la boule de centre r et d’un rayon
uniformément minoré dans F++

W (r)) et telle que

F++
W (r) =

⋃

t≥0

Φt
W(δΦ−t

W (r)).

Comme les applications Φt
W envoient F++

W (Φ−t
W (q)) sur F++

W (q) de façon (cebt, deat)-
bilipschitizienne (proposition 8.3), les boules fermées centrées en (q dans F++

W (q) sont
compactes. On en déduit la complétude de F++

W (p) = F++
W (q). Il ne nous reste plus

qu’à établir qu’un germe de surface en p tangente à TF++
W est en fait contenu dans

F++(p). Or, pour un point p′ appartenant à un telle surface (que l’on peut supposer
connexe), la distance d(Φt

W(p′),Φt
W(p)) converge vers 0 exponentiellement vite lorsque t

tend vers −∞ (relier p′ à p par un chemin et constater que la longueur de l’image de ce
chemin par Φt

W tend exponentiellement vite vers 0 car la surface est tangente à TF++).
Comme p appartient à la feuille stable du point q, on a également que la distance entre
Φt

W(p) et Φt
W(q) tend vers 0. On en déduit que celle entre Φt

W(p′) et Φt
W(q) tend vers 0,

ce qui prouve que p′ appartient à F++(q) = F++(p) et conclut la preuve de la propriété
d’unicité.

8.5.3. Construction du feuilletage instable faible. — Comme TF++
W et RW sont trans-

verses et que TF++
W est ΦW-invariante, pour p dans P2

∗, les ensembles

F+
W(p) :=

⋃

t∈R

F++
W

(

Φt
W(p)

)
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sont des variétés immergées de dimension 3 tangentes à TF+
W = TF++

W + RW. L’appli-
cation (t, p) ∈ R × F++

W (p) → Φt
W(p) ∈ F+

W(p) est un revêtement et la métrique h sur
ce revêtement est minorée par dt2 + ebth à une constante multiplicative près (proposi-
tion 8.3) : les variétés immergées F++

W (p) munies de la métrique h sont donc complètes.
Pour établir la propriété d’unicité, il suffit de projeter un germe en p de sous-variété N
de classe C1 tangente à TF+

W sur F++
W (p) parallèlement aux orbites du flot ΦW. L’image

est un germe de surface de classe C1 tangente à TF++
W passant par p qui est contenu

dans F++
W (p) (8.5.2), ce qui permet de conclure que le germe original N est contenu dans

F+
W(p). Le lemme 8.9 appliqué à la famille de variétés immergées {F+

W(p)}p∈P2∗ fournit
l’existence du feuilletage instable faible F+

W.

8.5.4. Construction du feuilletage stable fort. — À nouveau, nous faisons appel au
lemme 8.9 et définissons une famille de variétés F−−

W (p) pour p dans P2
∗. Si p appar-

tient à l’ensemble de Fatou, il existe un réel t et un point q dans ∂UB tels que p = Φt
W(q).

On pose alors F−−
W (p) = Φt

W(F(q)∩ ∂UB). Il s’agit d’une variété difféomorphe au cercle
qui, par construction (8.1), est tangente à TF−−

W ; en particulier, la distribution TF−−
W est

lisse dans l’ensemble de Fatou et la propriété d’unicité est une conséquence du théorème
de Frobenius. La propriété de complétude est également satisfaite dans l’ensemble de
Fatou car les variétés F−−

W (p) sont compactes.
Tout point p dans l’ensemble de Julia de F privé de S est attiré vers K par le flot ΦW

lorsque le temps tend vers +∞ et appartient donc à la variété stable forte F−−
W (q) d’un

point q de K. On pose F−−
W (p) := F−−

W (q). Les propriétés de complétude et d’unicité se
prouvent de façon analogue à celles pour les variétés instables fortes (8.5.2). Le lemme 8.9
permet de conclure à l’existence d’un unique feuilletage F−−

W dont la distribution tan-
gente est TF−−

W .

8.5.5. Le feuilletage stable faible. — Par construction, la distribution TF−
W est égale

à TRF . Elle est donc lisse et intégrable : le théorème de Frobenius montre que F−
W = F

est l’unique feuilletage dont la distribution tangente est TF−
W.

Remarque 8.10. — La construction des feuilletages stables et instables que nous
avons décrite pour le champ W fonctionne de façon similaire pour toute reparamétrisa-
tion exp(ϕ)W du champ W, où ϕ : P2

∗ → R est une fonction lisse constante en dehors
d’un compact.

Remarque 8.11. — Par construction, toutes les feuilles de F++
W sont des sections

transverses ; ce sont des courbes entières pour la structure holomorphe induite par la
structure transverse holomorphe de F (nous n’utiliserons pas ce fait dans ce qui suit).

Remarque 8.12. — Il est intéressant de noter qu’au voisinage des singularités de F
le feuilletage F+

W est localement le produit du feuilletage R sur ∂US par une demi-droite
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réelle, tandis qu’au voisinage de la section transverse B, il possède localement la structure
d’un livre ouvert, même si cette structure ne se globalise pas à B tout entier : il y a un
phénomène de monodromie le long des chemins fermés de B.

Corollaire 8.13. — Les ensembles de W-attraction (resp. de W-répulsion) de K sont contenus

dans P2
∗ et ont une structure de lamination par variétés stables faibles (resp. instables).

Démonstration. — Cela résulte du fait que ces ensembles sont fermés dans P2
∗, du

corollaire 8.6 et de la proposition 8.8. □

9. Groupe affine, ensemble hyperbolique et conjecture d’Anosov

Le but de ce paragraphe est de vérifier la conjecture d’Anosov pour un feuilletage
algébrique du plan projectif complexe satisfaisant les propriétés PB et PS. En particulier,
nous construisons une action localement libre du groupe affine qui nous servira pour
établir la stabilité structurelle de ces feuilletages.

9.1. Action du groupe affine. — Nous noterons Aff+(R) le groupe R2 muni de la loi
(x, t) · (x′, t′) = (et′x + x′, t + t′).

Lemme 9.1. — Soit F un feuilletage algébrique de P2 satisfaisant les propriétés PB et PS. Il

existe une action localement libre et continue du groupe Aff+(R) sur P2
∗ dont les orbites sont les feuilles

de la restriction de F à P2
∗.

Démonstration. — Soit T > 0 un nombre réel et hT
W,F la métrique sur le fibré NFW

définie par

hT
W,F(·) :=

∫ T

0
hW,F

(

DΦ−s
W ·)ds,

où hW,F est la métrique sur NFW induite par h (voir paragraphe 8.1). Définissons la
fonction

u(p) := d log hT
W,F(DΦt

Wv)

dt |t=0
pour v ∈ NFW(p) \ 0,

qui ne dépend pas du choix de v. Comme

u(p) = −hW,F(DΦ−T
W v) + hW,F(v)

hT
W,F(v)

,

le lemme 8.1 montre que si T est choisi suffisamment grand, la fonction u vérifie

(9.1) −a < u < −b



STABILITÉ STRUCTURELLE DU FEUILLETAGE DE JOUANOLOU DE DEGRÉ 2 219

pour certaines constantes uniformes a, b > 0. Nous définissons le reparamétrage de W
par

(9.2) WR := −2
u

W.

Comme la restriction de W à P2
∗ est complet, l’estimée (9.1) montre que WR est complet

également. On a de plus la formule

(9.3) hT
W,F

(

DΦt
WR

v
) = exp(−2t)hT

W,F(v) pour tout v ∈ NFW.

Notons que, vu la forme particulière du couple (h,W) dans UB ∪ US, la fonction u est
constante dans ΦT

W(UB) ∪ US ; en particulier toutes ses dérivées sont bornées. Le lemme
8.1 est donc satisfait pour le champ WR à la place du champ W. Les propositions 8.3
et 8.8 sont donc également valables pour le champ WR (remarque 8.10) et fournissent
l’existence d’un feuilletage stable fort F−−

WR
sur P2

∗ de dimension réelle 1, de classe C1,0

dont la distribution tangente TF−−
WR

est contenue dans TRF et fait un angle avec RW
minoré par une constante strictement positive.

Nous notons X le champ de vecteurs continu sur P2
∗ qui est tangent à F−−

WR
, dont

la projection dans NFW = TRF/RWR est de norme 1 vis-à-vis de la métrique hT
W,F et

orienté de sorte que le couple (X,WR) forme une base directe de TRF . Nous introdui-
sons la métrique continue hH sur TRF comme étant l’unique métrique rendant la base
(X,WR) orthonormale :

(9.4) hH(X,X) = hH(WR,WR) = 1 et hH(X,WR) = 0.

Lemme 9.2. — La restriction de hH à toute feuille de FP2∗ est complète.

Démonstration. — Comme les métriques hT
W,F et hW,F sont bornées l’une par rap-

port à l’autre à des constantes multiplicatives près et que l’angle entre X et WR est minoré
par une constante strictement positive uniforme, la métrique hH et la restriction de h au
feuilletage sont majorées l’une par rapport à l’autre à des constantes multiplicatives stric-
tement positives près. Le résultat découle de ce que la restriction de h aux feuilles de FP2∗
est complète. □

Nous définissons le flot ΦX = {Φt
X}t∈R de la façon suivante : pour tout p ∈ P2

∗,
t �→ Φt

X(p) est le paramétrage de classe C1 de la feuille de F−−
WR

passant par p, isométrique
vis-à-vis de la métrique hH, respectant l’orientation et envoyant t = 0 sur Φ0

X(p) = p. Il est
bien défini pour tout temps d’après le lemme 9.2. Par définition de ΦX, on a les relations
Φt+t′

X = Φt
X ◦ Φt′

X pour tous t, t′ ∈ R, ainsi que

(9.5)
∂Φt

X(p)

∂ t t=0
= X(p) pour tout p.



220 AURÉLIEN ALVAREZ, BERTRAND DEROIN

D’autre part, ΦX est un flot continu puisque la distance entre p et Φt
X(p) est majorée

par |t| pour la métrique hH, donc par une constante fois |t| pour la métrique h, ce qui
montre que Φt

X converge uniformément vers l’identité sur tout compact.
La construction de ΦX ainsi que (9.3) montrent que les transformations Φt

WR

échangent les feuilles de F−−
WR

en leur appliquant une contraction (vis-à-vis de hH) d’un
facteur e−t et en préservant leur orientation donnée par X. Nous avons donc les relations

(9.6) Φt
WR

◦ Φx
X = Φe−t x

X ◦ Φt
WR

pour tout (x, t) ∈ R2. Nous obtenons alors une action continue π : Aff+(R) × P2
∗ → P2

∗
par la formule

(9.7) π(x, t, p) = Φt
WR

◦ Φx
X(p) pour tous (x, t) ∈ Aff+(R), p ∈ P2

∗.

Cette action est localement libre d’après (9.5) (ainsi que la relation analogue pour WR

qui est lisse) et X et WR sont linéairement indépendants en tout point. Les orbites étant
contenues dans des feuilles de la restriction de F à P2

∗, ce sont donc des ouverts dans ces
dernières qui sont connexes. □

9.2. Structure hyperbolique, structure affine et topologie des feuilles. — Étant donné un point
p ∈ P2

∗, la feuille de la restriction de F à P2
∗ passant par p est F(p) \ B. Notons πp : R2 →

F(p) \ B le paramétrage défini par

(9.8) πp(x, t) := π(x, t, p).

Lemme 9.3. — Les applications πp sont des immersions de classe C1 qui induisent des revête-

ments de R2 dans F(p) \ B.

Démonstration. — En vertu de (9.5) et de l’identité analogue pour WR qui est lisse,
ainsi que des relations (9.6), l’application πp admet des dérivées partielles par rapport à x

et t égales à

∂πp(x, t)

∂x
= e−tX

(

πp(x, t)
)

et
∂πp(x, t)

∂ t
= WR

(

πp(x, t)
)

.

Ces dernières étant continues et linéairement indépendantes, πp est une immersion de
classe C1. Par construction, on a

(9.9) (πp)
∗hH = e−2tdx2 + dt2,

et comme la restriction de hH à F(p) \ B est complète, πp est une isométrie locale entre
deux variétés riemanniennes complètes, et en particulier un revêtement. □
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Notons que si q = Φ
t0
WR

◦ Φ
x0
X(p) est un autre point dans F(p) \ B, la relation (9.6)

montre que

πq(x, t) = πp

(

et0x + x0, t + t0
)

.

Les transformations du plan R2 définies par

(9.10) (x, t) �→ (

et0x + x0, t + t0
)

forment un groupe qui préserve une triple structure géométrique : la métrique rieman-
nienne e−2tdx2 + dt2 qui est complète et de courbure constante −1, la structure affine
de R2 ainsi que le champ de vecteur vertical ∂

∂ t
. La famille d’applications πp confèrent

donc aux feuilles de F cette triple structure géométrique.

Proposition 9.4. — Les feuilles non simplement connexes de F sont des anneaux qui contiennent

une unique trajectoire périodique de W dans l’ensemble hyperbolique K. En particulier, les séparatrices

de F sont des anneaux. Réciproquement, toute trajectoire périodique de W dans K est contenue dans une

feuille annulaire de F .

Démonstration. — Comme l’ensemble de Fatou est égal à l’ensemble errant D, dans
lequel toutes les feuilles de F sont simplement connexes, une feuille non simplement
connexe est contenue dans l’ensemble de Julia.

Notons que le rayon d’injectivité des feuilles de la restriction de F à l’ensemble de
Julia munies de la métrique hH est uniformément minoré. En fait, le rayon d’injectivité
est une fonction continue qui tend vers l’infini lorsque l’on se rapproche de l’ensemble
singulier. En effet, comme X ne s’annule pas, il existe l > 0 tel que l’orbite par le flot ΦX

de tout point du bord ∂US d’un voisinage US de S est de période strictement supérieure
à 2l. Soit p dans US et T = inf{t > 0 ; Φt

WR
(p) ∈ ∂US}. Puisque πp est injective sur

ΔT = [−leT, leT]× ]−∞,T], on en déduit que le rayon d’injectivité en p = πp((0,0)) de la
métrique hH est minoré par le rayon maximal possible pour une boule centrée en (0,0) et
contenue dans ΔT, ce dernier tendant vers l’infini lorsque p tend vers l’ensemble singulier.

Soit p un point régulier de l’ensemble de Julia. La feuille F(p) de F passant par p

ne rencontre pas la surface B. Le lemme 9.3 montre que F(p) est isomorphe (munie de
sa triple structure géométrique) au quotient de R2 par un sous-groupe du groupe des
transformations (9.10) qui agit librement, proprement et discontinûment. Un tel groupe
est nécessairement cyclique, engendré par une transformation (x, t) �→ (et0x + x0, t + t0).
Observons que t0 �= 0 car le rayon d’injectivité des feuilles pour la métrique hH est uni-
formément minoré par une constante strictement positive. Si l’on désigne par x1 ∈ R le
point fixe de x �→ et0x + x0, la verticale {x1} × R se projette via πp sur une orbite pério-
dique de ΦWR ; de plus, toute autre trajectoire périodique est de cette forme. Ainsi, toute
feuille non simplement connexe est annulaire et contient une unique orbite périodique
non constante de WR.
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Réciproquement, toute orbite périodique de WR passant par un point p se relève
via le revêtement πp en la courbe verticale {x1} × R. L’application πp est donc non injec-
tive et la feuille passant par p est non simplement connexe, donc annulaire comme nous
l’avons vu.

La proposition (9.4) découle alors du fait que W et WR ont les mêmes orbites. □

9.3. Conjecture d’Anosov. — Nous terminons cette partie en établissant que les
feuilletages satisfaisant les propriétés PB et PS vérifient la conjecture d’Anosov.

Théorème 9.5. — Soit F un feuilletage algébrique de P2 satisfaisant les propriétés PB et PS.

Alors, toutes les feuilles de F sont simplement connexes, sauf un nombre dénombrable qui sont des anneaux

d’holonomie hyperbolique.

Démonstration. — Comme l’ensemble hyperbolique K ne contient qu’un nombre
dénombrable d’orbites périodiques pour W (corollaire 8.7), la proposition 9.4 montre
qu’il n’y a qu’un nombre dénombrable de feuilles non simplement connexes. D’autre
part, chaque feuille annulaire contient une orbite périodique non constante du champ W
qui est contenue dans K. D’après le corollaire 6.3, l’holonomie de F le long de cette
orbite périodique est un germe de transformation dilatante, donc hyperbolique. □

Corollaire 9.6. — Soit F un feuilletage algébrique de degré d ≥ 2 de P2 satisfaisant les pro-

priétés PB et PS. Alors, F n’a pas de courbe algébrique invariante.

Démonstration. — En effet, si une telle courbe C existait, d’après le théorème 9.5,
elle serait rationnelle puisque C \ S serait annulaire. Elle serait donc lisse de degré 1
ou 2 et contiendrait deux singularités de F , ou bien elle serait de degré 3 avec un point
double qui serait l’unique singularité de F contenue dans C. Or, d’après [5, Prop. 2.3],
on a NF · C = Z(F ,C) + C2, ce qui est absurde puisque NF est de degré ≥ 4 alors que
Z(F ,C) = 2 (dans les deux premiers cas) et Z(F ,C) = 0 (dans le troisième cas). □

Remarque 9.7. — Voir la remarque 11.7 pour une autre preuve du corollaire 9.6.
Par ailleurs, notons également qu’on peut en déduire qu’il n’y a pas non plus de courbe
entière tangente à un tel feuilletage. En effet, d’après [7], une telle courbe entière per-
mettrait de construire un courant positif fermé invariant dont le support contiendrait une
singularité. Compte-tenu de la nature des singularités de F , un tel courant serait donc
réduit à un courant d’intégration sur une courbe algébrique invariante.

10. Stabilité structurelle

Dans cette partie nous démontrons le théorème de stabilité structurelle.
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Théorème 10.1. — Soit F un feuilletage algébrique complexe de P2 de degré d satisfaisant les

propriétés PB et PS. Alors, tout feuilletage algébrique complexe de degré d suffisamment proche de F lui

est topologiquement conjugué.

Nous utiliserons la topologie sur l’espace des feuilletages algébriques complexes
de P2 définie par le quotient de la topologie naturelle sur l’espace des champs de vecteurs
homogènes (non nuls) de degré d sur C3 : deux feuilletages F et F ′ sont proches s’ils
peuvent être définis par des champs de vecteurs homogènes de degré d sur C3 qui sont
proches. Il est immédiat de vérifier que les propriétés PB et PS sont ouvertes pour cette
topologie.

10.1. Stabilité structurelle de l’ensemble de Julia. — Nous établissons que l’ensemble
de Julia de F est structurellement stable dans le sens suivant : si F ′ est un feuilletage
algébrique complexe de degré d suffisamment proche de F , son ensemble de Julia est
topologiquement conjugué à celui de F .

On rappelle que V désigne un champ de vecteurs homogène sur C3 \ {0} de de-
gré d qui ne s’annule pas, de divergence nulle tel que la projectivisation de FV est le
feuilletage F . De plus, si V′ est un autre champ (de degré d qui ne s’annule pas et de
divergence nulle), on notera F ′ le feuilletage de P2 induit par V′, W′ le champ défini
au paragraphe 4.3 qui est associé à V′, B′ l’ensemble des singularités de W′ le long des
feuilles de F ′, etc.

Proposition 10.2. — Il existe un voisinage de V dans l’espace des champs de vecteurs homogènes

de degré d qui ne s’annulent pas et de divergence nulle sur C3 tel que pour tout V′ dans ce voisinage, il

existe un homéomorphisme ψ : P2 \ B → P2 \ B′ qui conjugue orbitalement les flots ΦW et ΦW′ . De

plus, ψ converge vers l’identité (pour la topologie compacte ouverte) lorsque V′ tend vers V.

Démonstration. — Rappelons que nous avons noté UB (resp. US) un voisinage de B
(resp. de S) dont le bord est transverse à W et sur lequel F est un fibré lisse localement
trivial en disques au-dessus de B (resp. un voisinage de linéarisation de S, lemmes 4.8 et
4.11). Si V′ est choisi suffisamment proche de V, on pourra supposer que UB′ = UB et
que US′ = US ; on aura en particulier les inclusions B′ ⊂ UB et S′ ⊂ US, et le fait que W′

est transverse sortant à ∂US et transverse rentrant à ∂UB.
Nous allons appliquer le théorème [23, Theorem C, p. 3] de Robinson pour mon-

trer que la restriction de ΦW à la variété à bord M = P2 \ Int(UB ∪ US) est structurelle-
ment stable. Comme le champ W est transverse à ∂M, il suffit de montrer que l’ensemble
récurrent par chaîne est hyperbolique et que les variétés instables fortes de ce dernier in-
tersectent les variétés stables faibles transversalement. Or, ou bien les trajectoires de ΦW

dans M sont contenues dans K, ou bien elles intersectent le bord de M. Donc l’ensemble
récurrent par chaîne est contenu dans K ; il est ainsi hyperbolique d’après la proposition
8.5. De plus, les feuilles stables faibles des W-trajectoires sont les feuilles de F puisque F
est le feuilletage stable faible pour la métrique h (section 8.5). Quant aux feuilles instables
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fortes de W-trajectoires, ce sont des sections transverses du feuilletage F (section 8.5) :
en particulier, l’hypothèse de transversalité est donc bien satisfaite et le flot ΦW est orbi-
talement structurellement stable sur M. On pourra donc trouver un homéomorphisme
ψ : M → M qui envoie les trajectoires de ΦW sur celles de ΦW′ . On étend ψ à un ho-
méomorphisme de P2

∗ dans P2
∗
′ en posant pour tout t ≥ 0

(10.1) ψ
(

Φt
W(p)

) = Φt
W′

(

ψ(p)
)

si p ∈ ∂UB

et

ψ
(

Φ−t
W (p)

) = Φ−t
W′

(

ψ(p)
)

si p ∈ ∂US.

L’homéomorphisme ψ défini de cette façon se prolonge par continuité à l’ensemble S en
un homéomorphisme ψ : P2 \B → P2 \B′ qui conjugue orbitalement ΦW et ΦW′ . Cela est
dû au fait que les singularités de F (resp. de F ′) sont des sources pour W (resp. W′). □

Lemme 10.3. — Les feuilles de F qui intersectent K sont exactement les feuilles de l’ensemble

de Julia J(F) de F .

Démonstration. — L’ensemble de Julia J(F) est l’ensemble des points dont la tra-
jectoire par ΦW tend vers K dans le futur. D’après le corollaire 8.6, J(F) est l’union
des feuilles stables faibles des points de K, c’est-à-dire des feuilles de F qui inter-
sectent K. □

Corollaire 10.4. — L’ensemble de Julia de F est structurellement stable. Plus précisément,

l’homéomorphisme ψ construit à la proposition 10.2 induit par restriction un homéomorphisme ψ :
(J(F),F) → (J(F ′),F ′).

Démonstration. — Le saturé de ∂UB par ΦW (resp. ΦW′ ) est l’ensemble de Fatou
de F (resp. celui de F ′). Comme l’homéomorphisme ψ envoie ∂UB sur lui-même et qu’il
conjugue orbitalement ΦW à ΦW′ , il envoie l’ensemble de Fatou de F sur celui de F ′

et, par conséquent, l’ensemble de Julia de F sur celui de F ′. De même, l’homéomor-
phisme ψ envoie RépW(S) sur RépW(S′) et, en particulier, K sur K′. Comme ψ est une
conjugaison orbitale, il envoie les feuilles stables faibles pour ΦW des points de K sur les
feuilles stables faibles pour ΦW′ des points de K′. Or ces dernières sont les feuilles de F
(resp. F ′) qui intersectent K (resp. K′). Le lemme 10.3 permet de conclure. □

10.2. Intermède : les bandes. — Pour construire une conjugaison globale, nous au-
rons besoin d’étudier la restriction du feuilletage F (ainsi que des structures géométriques
sur ces feuilles induites par les coordonnées πp, éq. (9.8)) à l’ensemble de W-répulsion du
lieu singulier de F (ou ce qui revient au même, au complémentaire de l’ensemble de
W-répulsion de l’ensemble hyperbolique K) : nous appellerons bande une feuille de la
restriction de F à cet ensemble.
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Lemme 10.5. — Soit s ∈ S. Les deux feuilles annulaires de la restriction de F à Int(Us)

(lemme 4.11) sont contenues dans des bandes annulaires. Les autres bandes de RépW(s) sont simplement

connexes et accumulent sur les deux bandes annulaires. L’union des bandes simplement connexes contenues

dans RépW(s) est un ouvert sur lequel le feuilletage est un fibré lisse topologiquement trivial par disques

au-dessus de la courbe elliptique Es.

Démonstration. — Comme les trajectoires de W dans Us tendent en −∞ vers un
point s de S et sortent transversalement à ∂Us en temps fini, la restriction du feuilletage F
à l’ensemble RépW(s) est le produit de l’intersection du feuilletage F avec ∂Us avec la
droite réelle. Le résultat découle alors du lemme 4.11. □

Étant donné s ∈ S, nous notons β±(s) les deux bandes annulaires contenues dans
RépW(s). Le signe est déterminé par la propriété suivante : l’holonomie de F le long d’un
lacet de β+(s) (resp. β−(s)) d’indice positif vis-à-vis de s est dilatante (resp. contractante).

Définition 10.6. — Soit β une bande et p ∈ β . La composante connexe de π−1
p (β) ⊂ R2

contenant le point (0,0) est un ouvert connexe invariant par le champ ∂

∂ t
dans les coordonnées (x, t) ∈ R2

(car l’image de ce dernier par la différentielle de πp est le champ WR qui laisse invariant β) ; elle est

donc de la forme Ip × R où Ip est un invervalle ouvert contenant 0.

Lemme 10.7. — Étant donné s ∈ S, les bords de β±(s) dans leurs feuilles respectives sont des

orbites périodiques du flot W. De plus, pour tout p ∈ β+(s) (resp. p ∈ β−(s)), l’intervalle Ip est de la

forme ]−∞, x1[ (resp. ]x1,+∞[) avec x1 ∈ R.

Démonstration. — Le sous-ensemble Ip × R ⊂ R2 est invariant par un automor-
phisme non trivial du revêtement πp de la forme (et0x + x0, t + t0) avec t0 non nul (propo-
sition 9.4). L’intervalle Ip est alors invariant par x �→ et0x + x0, et ne contient pas son point
fixe x1 = x0/(1 − et0), sans quoi la bande contiendrait une orbite périodique de W (ce qui
est impossible car une telle orbite n’intersecte pas l’ensemble de répulsion de RépW(S).
Il n’y a que deux intervalles non vides de ce type : ]x1,+∞[ ou ]−∞, x1[. Le bord de
β±(s) dans la feuille de F dans laquelle elle est contenue est la W-orbite πp(x1 × R) qui
est périodique. Cette orbite périodique est d’holonomie dilatante, donc la bande β+(s)

se situe à gauche de cette orbite et la bande β−(s) à droite. □

Lemme 10.8. — Soit s ∈ S. Pour tout point p appartenant à une bande simplement connexe

β ⊂ RépW(s), l’intervalle Ip est borné. Il existe un unique point σ(p) ∈ β tel que Iσ(p) =]−1,1[.
L’application p ∈ RépW(s) \ (β+(s)∪ β−(s)) �→ σ(p) ∈ RépW(s) \ (β+(s)∪ β−(s)) est continue,

constante le long des bandes et son image Σs est une section transverse torique continue de F biholomorphe

à la courbe elliptique Es (lemme 4.11).

Démonstration. — Les bandes non annulaires, qui s’accumulent sur chacune des
bandes annulaires β+(s) et β−(s) (lemme 10.5), contiennent dans leur bord une tra-
jectoire de W située dans la variété instable faible des W-orbites périodiques ∂β±(s)
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(lemme 10.7). Ceci montre que Ip est un intervalle borné et que les applications qui à
un point p appartenant à RépW(s) \ (β+(s) ∪ β−(s)) associent les extrémités positives et
négatives de l’intervalle Ip sont continues. L’existence et l’unicité du point σ(p) découle
alors de la formule suivante : pour tout (x, t) ∈ Ip × R, on a Iπp(x,t) = e−t(Ip − x). La conti-
nuité de σ est une conséquence de la transversalité de la lamination RépW(K) avec le
feuilletage F , ainsi que de la continuité de l’action π (lemme 9.1). L’application σ est par
construction le quotient de l’ouvert RépW(s) \ (β+(s) ∪ β−(s)) par le feuilletage : l’image
de σ est donc biholomorphe à Es. □

Définition 10.9. — Soient Σ±
s les projections de Σs sur l’ensemble de répulsion RépW(K)

définis par les images respectives des applications

p ∈ Σs �→ πp

(

(±1,0)
) ∈ RépW(K).

On note Σ (resp. Σ±) l’union des Σs (resp. Σ±
s ) pour s ∈ S.

Une bande simplement connexe β admet deux composantes de bord ∂±β dans la
feuille dans laquelle elle est contenue : ∂+β est la composante de bord dont l’orientation
coïncide avec celle de W, ∂−β celle dont l’orientation est contraire à celle de W. Si
p ∈ β ∩ Σ, alors ∂+β = πp(1 × R) et ∂−β = πp(−1 × R). Les points de Σ+ se situent
donc sur les bords positifs des bandes simplement connexes et ceux de Σ− sur les bords
négatifs de ces dernières.

10.3. Stabilité structurelle globale. — Dans ce paragraphe nous terminons la démons-
tration du théorème 10.1 en construisant une conjugaison entre F et F ′ qui coïncide avec
n’importe quel homéomorphisme l : B → B′ tel que

(10.2) sup
p∈B

d
(

p, l(p)
)

soit suffisamment petit. La stratégie consiste à modifier l’homéomorphisme ψ construit à
la proposition 10.2 sur le complémentaire de l’ensemble K. Cette modification a lieu en
deux temps.

On modifie dans un premier temps ψ sur l’ensemble RépW(K) de façon à
construire un homéomorphisme Ψ : RépW(K) → RépW′(K′). Puis, dans un second
temps, on étend Ψ au complémentaire de RépW(K) qui est égal à l’ensemble de répul-
sion RépW(S) pour construire un homéomorphisme global de P2 qui conjugue F à F ′

via une formule explicite dans chaque bande.

10.3.1. Construction de Ψ .

Proposition 10.10. — Il existe un homéomorphisme Ψ : RépW(K) → RépW′(K′) satisfaisant

les conditions suivantes :
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(1) pour toute feuille F de F , il existe une feuille F′ de F ′ telle que

Ψ
(

F ∩ RépW(K)
) = F′ ∩ RépW′

(

K′) ;
(2) pour toute bande simplement connexe β de F , il existe une bande simplement connexe β ′ de

F ′ telle que

Ψ
(

∂±β
) = ∂±β ′.

De plus, il existe une bijection s ∈ S �→ s′ ∈ S′ telle que

Ψ
(

∂β±(s)
) = ∂β ′±(

s′) ;
(3) il existe des constantes a, b > 0 telles que Ψ induit une (a, b)-quasi-isométrie entre le

revêtement universel d’une W-trajectoire et celui de son image par Ψ (dans les paramétrages

donnés par les temps des champs W et W′ respectivement) ;

(4) il existe une constante c > 0 telle que pour tout point p ∈ Σ± (voir définition 10.9) il existe

p′ ∈ Σ′± et t ∈ R tels que |t| ≤ c et Ψ(p) = Φt
W(p′).

Démonstration. — Nous choisirons des perturbations V′ suffisamment petites de V
de façon à ce que l’on puisse construire les voisinages UB′ et US′ de B′ et S′ respectivement
égaux à UB et US comme dans la preuve de la proposition 10.2.

Notons πB : ∂UB → B la projection parallèle au feuilletage F . Il s’agit d’un fibré
localement trivial en cercles au-dessus de B. L’ensemble RépW(K) possède une struc-
ture de lamination par variétés instables faibles du flot ΦW qui sont des variétés lisses de
dimension 3 (corollaire 8.13) : cette lamination intersecte le fibré πB transversalement.
Ainsi, pour tout b ∈ B, si l’on note Cb := π−1

B (b)∩RépW(K), il existe un voisinage Vb de b

dans B ainsi qu’un homéomorphisme

(10.3) Fb : π−1
B (Vb) → π−1

B (b) × Vb

tel que πB = prVb
◦ Fb et Fb(RépW(K) ∩ π−1

B (Vb)) = Cb × Vb (les plaques instables faibles
étant envoyées sur les verticales p × Vb). La restriction de Fb à π−1

B (Vb) ∩ RépW(K) est
unique.

De façon analogue, nous définissons un fibré en cercles πB′ : ∂UB′ → B′, le point
b′ = l(b), l’ensemble C′

b′ := π−1
B′ (b′) ∩ AttW′(K′), le voisinage V ′

b′ := l(Vb) de b′ ∈ B′ et
l’homéomorphisme F′

b′ : π−1
B′ (V ′

b′) → π−1
B′ (b′) × V ′

b′ .
L’homéomorphisme ψ : P2

∗ → P2
∗
′ applique RépW(K) sur RépW′(K′), en envoyant

une feuille instable faible de W sur une feuille instable faible de W′ (corollaire 10.4). De
plus, ψ envoie ∂UB sur ∂UB′ = ∂UB et converge vers l’identité dans la topologie compacte
ouverte lorsque V′ tend vers V. Si le supremum (10.2) est suffisamment petit, l’image de
la courbe π−1

B (b) par ψ est donc contenue dans le voisinage π−1
B′ (V ′

b′). Dans les cartes Fb

et F′
b′=l(b), ψ prend alors la forme

(10.4) Fb′ ◦ ψ ◦ F−1
b (p, c) = (

p′(p), c′(p, c)
)

,
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sur un voisinage suffisamment petit de Cb × {b} dans Cb × Vb, tout en s’étendant en un
homéomorphisme d’un voisinage de π−1

B (b) × {b} dans π−1
B (b) × Vb. Ceci nous permet

de définir une transformation

Ψ0 : ∂UB ∩ RépW(K) → ∂UB′ ∩ RépW′
(

K′)

par

(10.5) Fb′ ◦ Ψ0 ◦ F−1
b (p, c) = (

p′(p), c′ = l(c)
)

.

Échanger le rôle de ψ et ψ−1 mène à la construction de l’inverse de Ψ0. Ce dernier est
donc un homéomorphisme qui vérifie les propriétés suivantes.

Lemme 10.11. — L’application Ψ0 définie par (10.5) induit un homéomorphisme

∂UB ∩ RépW(K) → ∂UB′ ∩ RépW′
(

K′)

vérifiant :

– pour tout p ∈ ∂UB ∩ RépW(K), Ψ0(p) appartient à F+
W′(ψ(p)) ;

– pour tout b ∈ B, Ψ0(Cb) = C′
l(b) ;

– pour tout b ∈ B, et toute composante connexe I de π−1
B (b) \ RépW(K) d’extrémités positives

et négatives ∂±I, il existe une composante connexe I′ de π−1
B′ (l(b)) \ RépW′(K′) d’extrémités

positives et négatives ∂±I′ telle que

Ψ0

(

∂±I
) = ∂±I′.

Dans cet énoncé, il est important de noter que les fibrés en cercles πB et πB′ sont
orientées par l’orientation des feuilletages F et F ′. Il y a donc bien un sens à parler des
extrémités positives et négatives d’un intervalle contenu dans une fibre. Notons également
que l’intervalle I du lemme 10.11 ci-dessus est contenu dans une bande β telle que I =
β ∩ ∂UB et ∂±I = ∂±β ∩ ∂UB.

Pour définir l’application Ψ : RépW(K) → RépW′(K′), il nous faut introduire le
cocycle instable faible sur les feuilles instables faibles du flot W′ : étant donné deux points
x, y ∈ RépW′(K′) \ K′ qui appartiennent à la même feuille instable faible du flot ΦW′ , il
existe un unique réel c′(x, y) ∈ R tel que Φ

c′(x,y)
W′ (x) ∈ F++

W′ (y) ou, en d’autres termes, tel
que

(10.6) d
(

Φ
τ+c′(x,y)
W′ (x),Φτ

W′(y)
) −−−→

τ→−∞ 0.

Ce cocyle est continu comme fonction de x et y, du fait de la structure de lamination
par variétés instables fortes de l’ensemble de W-répulsion de K (section 8.5). Notons
que la convergence (10.6) est exponentielle et uniforme pour (x, y) dans un compact. En
particulier, la fonction p ∈ RépW(K) ∩ ∂UB �→ c′(ψ(p),Ψ0(p)) ∈ R est continue.
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Tout point q ∈ F(F) ∩ RépW(K) s’écrit de façon unique sous la forme q = Φt
W(p)

avec p ∈ ∂UB ∩ RépW(K) et t ∈ R. Écrivons

ψ(q) = Φτ
W′

(

ψ(p)
)

pour un certain τ = τ(q) qui tend uniformément vers −∞ (resp. +∞) lorsque q tend
vers J(F) (resp. B). Définissons Ψ sur F(F) ∩ RépW(K) par la formule

(10.7) Ψ(q) := Φ
τ+c′(Ψ0(p),ψ(p))

W′
(

Ψ0(p)
)

.

Observons que la limite (10.6) donne

(10.8) lim
q∈(F(F)∩RépW(K))\Int(UB)→∞

d
(

Ψ(q),ψ(q)
) = 0.

Le lemme suivant termine la démonstration de la proposition 10.10. □

Lemme 10.12. — La transformation

Ψ : RépW(K) → RépW′
(

K′)

définie par (10.7) sur F(F)∩RépW(K) et par ψ|K sur K = J(F)∩RépW(K) est un homéomorphisme

qui vérifie les propriétés de la conclusion de la proposition 10.10.

Démonstration. — Les propriétés (1) et (2) de la proposition 10.10 découlent immé-
diatement du lemme 10.11 en restriction à chaque feuille du domaine de Fatou de F .
L’homéomorphisme ψ envoie les feuilles de l’ensemble de Julia de F sur celles de l’en-
semble de Julia de F ′, et l’ensemble RépW(K) sur l’ensemble RépW′(K′) : en particulier,
il envoie les bandes de F contenues dans l’ensemble de Julia de F sur des bandes de F ′

contenues dans l’ensemble de Julia de F ′. Comme par définition Ψ est égal à ψ sur
l’intersection de l’ensemble de Julia de F avec RépW(K), les propriétés (1) et (2) de la
proposition 10.10 sont également satisfaites sur les feuilles de l’ensemble de Julia de F .

Montrons que Ψ est un homéomorphisme. Par construction, c’est un homéomor-
phisme en restriction à RépW(K) ∩ F(F) (lemme 10.11). Pour montrer que Ψ définit un
homéomorphisme globalement, l’unique point délicat est la continuité de Ψ en un point
de l’ensemble de Julia de F . Or si (pn)n est une suite de points de dom(Ψ) = RépW(K)

qui converge vers un point p∞ ∈ J(F), on peut décomposer la suite (pn) en deux sous-
suites (pnk

)k et (pml
)l avec pnk

∈ F(F) ∩ RépW(K) et pml
∈ J(F). Il est clair que, à supposer

que la sous-suite (pml
)l soit infinie, on a liml Ψ(pml

) = Ψ(p∞) puisque Ψ et ψ coïncident
sur J(F) et que ψ est continue. Quant à la suite (pnk

)k , à supposer qu’elle soit infinie, la
limite (10.8) nous donne

d
(

Ψ(pnk
),Ψ(p∞) = ψ(p∞)

)

≤ d
(

Ψ(pnk
),ψ(pnk

)
) + d

(

ψ(pnk
),ψ(p∞)

) −−→
k→∞

0,

ce qui conclut la preuve de la continuité de Ψ le long de la suite (pn).
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D’après la proposition 10.2 (et plus précisément éq. (10.1)), l’homéomorphisme
Ψ : RépW(K) → RépW′(K′) est, en dehors d’un compact de RépW(K), une conjugaison
entre les flots induit par W et W′ (proposition 10.2). Le troisième item de la proposi-
tion 10.10 est donc satisfait par Ψ .

Enfin, en vertu du troisième item du lemme 10.11 ainsi que de la compacité de Σ±,
le quatrième item de la proposition 10.10 est également satisfait pour Ψ . La démonstra-
tion du lemme 10.12 est achevée. □

10.3.2. Extension de Ψ sur RépW(S). — Nous définissons dans ce paragraphe une
application

Ψ̃ : RépW(S) → RépW′
(

S′),

qui est, en restriction à chaque bande β de F , une extension de Ψ . Il y a deux cas :

Premier cas : β est simplement connexe. Considérons la bande β ′ (pour le champ W′)
associée à β (proposition 10.10). Soit p ∈ β (resp. p′ ∈ β ′) le point tel que Ip =]−1,1[
(resp. Ip′ = ]−1,1[) donné par le lemme 10.8.

L’homéomorphisme Ψ induit un homéomorphisme Ψβ de ∂([−1,1] × R) défini
par

π ′
p′ ◦ Ψβ = Ψ ◦ πp.

Étant donné t ∈ R, considérons les points P± = (±1, t) ∈ ∂([−1,1] × R) et Q± :=
Ψβ(P±) ∈ ∂([−1,1]×R). On subdivise l’intervalle orienté [P−,P+] = [−1,1]×{t} ⊂ R2

en trois intervalles I−, Im, I+, ordonnés par ordre croissant, avec I− et I+ de longueur

(10.9) l
(

I±) := 1
3

inf
(

l
([

P−,P+])

, l
([

Q−,Q+]))

,

où [P−,P+] et [Q−,Q+] sont les segments affines entre les points P± et Q± respecti-
vement vis-à-vis de la structure affine naturelle de R2 et la longueur l étant mesurée
relativement à la métrique hyperbolique e−2tdx2 + dt2.

Définissons l’extension Ψ̃β de Ψβ à [−1,1] × R par les conditions suivantes. Pour
tout t ∈ R :

– l’image par Ψ̃β du segment [P−,P+] est le segment affine [Q−,Q+] ;
– la restriction de Ψ̃β aux segments I± respecte la longueur d’arc (pour la métrique

hyperbolique e−2tdx2 + dt2) ;
– la restriction de Ψ̃β au segment Im dilate les longueurs par multiplication par

une certaine constante (qui dépend de t).

On définit l’extension Ψ̃ de Ψ à β via la formule

(10.10) π ′
p′ ◦ Ψ̃β = Ψ̃ ◦ πp.
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Deuxième cas : β n’est pas simplement connexe. — Supposons que β soit une bande
annulaire positive. Il lui correspond une bande positive β ′ de F ′ (voir le deuxième item de
la proposition 10.10). Soient p ∈ β , p′ ∈ β ′. En reprenant les notations du lemme 10.7, les
applications πp, π ′

p′ induisent des homéomorphismes (et0x + x0, t + t0)\(]−∞, x1[×R) →
β et (et′0x + x′

0, t + t′0)\(]−∞, x′
1[×R) → β ′. La restriction de l’homéomorphisme Ψ à

∂β induit donc un homéomorphisme Ψβ : (et0x + x0, t + t0)\(x1 × R) → (et′0x + x′
0, t +

t′0)\(x′
1 × R) satisfaisant

Ψ ◦ πp = π ′
p′ ◦ Ψβ.

L’application Ψβ se relève à un homéomorphisme de x1 ×R de la forme x1 × hβ où hβ est
un homéomorphisme de R. On étend alors Ψβ à l’homéomorphisme Ψ̃β : (et0x + x0, t +
t0)\(]−∞, x1] × R) → (et′0x + x′

0, t + t′0)\(]−∞, x′
1] × R) défini par

Ψ̃β(x, t) mod
(

et0x + x0, t + t0
)

:= (

x′
1 + ehβ(t)−t

(

x − x′
1

)

, hβ(t)
)

mod
(

et′0x + x′
0, t + t′0

)

.

Il s’agit du prolongement de Ψβ qui envoie le le feuilletage horizontal de ]−∞, x1] × R
sur celui de ]−∞, x′

1] × R en préservant la longueur d’arc sur les feuilles de ce dernier
relativement à la métrique hyperbolique e−2tdx2 + dt2. Enfin, on définit l’extension Ψ̃

de Ψ à β via la formule (10.10). Si β est une bande annulaire négative, on procède de
façon analogue.

Lemme 10.13. — Ψ̃ est continue.

Démonstration. — Le lemme 10.8 ainsi que la construction de Ψ̃ dans les bandes
simplement connexes montrent que Ψ̃ est continue en dehors des bandes annulaires.
Elle est de plus continue en restriction à chaque bande annulaire. Il nous suffit donc de
montrer qu’elle admet une limite le long de toute suite de points pn appartenant à des
bandes simplement connexes βn et convergeant vers un point p appartenant à une bande
annulaire β et que cette limite est égale à Ψ̃(p).

Nous supposerons que β est une bande annulaire positive, le cas d’une bande né-
gative se traitant de façon similaire. Soient πn := πσ(pn) : ]−1,1[×R → βn et π ′

n = π ′
σ ′(p′

n)
:

]−1,1[×R → β ′
n (voir lemme 10.8). Notons Pn = (xn, tn) = π−1

n (pn) les coordonnées des
points pn et introduisons les points

Qn = Ψ̃βn
(Pn) = (

x′
n, t′n

)

, P±
n = (±1, tn) et Q±

n = Ψ̃βn

(

P±
n

) = (±1, t′n
±)

,

et les points correspondant dans P2

p+
n = πn

(

P+
n

)

, p+ = π
(

P+)

et q±
n = π ′

n

(

Q±
n

)

.

Enfin, si Ip =]−∞, l[ pour un certain nombre l > 0 (car β est une bande annulaire
positive), notons p+ = πp(l,0).
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On a πpn
(x, t) = (e−tn(x − xn), t − tn), donc Ipn

=]−e−tn(1 + xn), e−tn(1 − xn)[.
Comme Ipn

converge vers Ip, on obtient

tn −−→
n→∞ −∞ et e−tn(1 − xn) −−→

n→∞ l.

Les troisième et quatrième items de la proposition 10.10 montrent que, en posant
d = b + c :

(10.11) a−1tn − d ≤ t′n
± ≤ atn + d.

On en déduit que les longueurs des segments [P−
n ,P+

n ] et [Q−
n ,Q+

n ] (mesurées avec la
métrique hyperbolique e−2tdx2 + dt2) tendent vers l’infini lorsque n tend vers l’infini, et
que Qn est le point situé sur le segment [Q−

n ,Q+
n ] à distance ln = l([Pn,P+

n ]) car cette
dernière tend vers l et reste donc bornée.

On a, par définition de l’extension ψ̃ : ψ(p+
n ) = q+

n , par suite q+
n converge vers

ψ(p+). D’autre part, la longueur du segment [qn, q+
n ] converge vers l. Pour conclure, il

nous suffit donc de montrer que l’angle entre le segment [q−
n , q+

n ] et le bord droit de β ′
n

tend vers π/2 pour la métrique hyperbolique e−2tdx2 + dt2. Pour cela, plaçons-nous dans
les coordonnées données par π ′

q+
n

: les points q+
n et q−

n ont alors pour coordonnées respec-

tives (π ′
q+

n
)−1(q+

n ) = (0,0) et (π ′
q+

n
)−1(q−

n ) = (−2e−t′n
+
, t′n

− − t′n
+
) et le bord gauche de β ′

n

est l’axe vertical (π ′
q+

n
)−1(∂+β ′

n) = {0} × R ⊂ R2. On a donc bien le résultat en vertu de
l’estimation (10.11) qui donne

t′n
− − t′n

+ = o
(

e−t′n
+)

. □

Lemme 10.14. — L’application P2
∗ → P2

∗
′

définie par Ψ dans RépW(K) et par Ψ̃ dans

RépW(S) s’étend en un homéomorphisme de P2 dans lui-même qui conjugue topologiquement les feuille-

tages F et F ′.

Démonstration. — Considérons une suite pn de points de P2
∗ qui converge vers un

point p∞ appartenant à RépW(K). Pour voir que Ψ(pn) converge vers Ψ(p∞), il suffit
de supposer que pn /∈ RépW(K) ou, de façon équivalente, que pn ∈ RépW(S). Comme
RépW(K) a la structure d’une lamination de dimension 3 réelle transverse au feuille-
tage F (corollaire 8.13), on pourra trouver une suite de points qn qui sont des extrémités
du segment horizontal contenant pn dans sa bande et tels que d(pn, qn) → 0. La suite qn

converge donc vers p∞. Par définition de Ψ sur RépW(K), on déduit d(Ψ(pn),Ψ(qn)) → 0
puis limΨ(pn) = limΨ(qn) = Ψ(p∞). La continuité de Ψ est ainsi démontrée.

Tout homéomorphisme de P2
∗ dans P2

∗
′ qui envoie les feuilles de F sur celles de F ′

s’étend en un homéomorphisme de P2 qui conjugue topologiquement les feuilletages F
et F ′. □
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11. Étude des sections transverses

Étant donné un feuilletage algébrique complexe F de P2, on rappelle qu’une sec-
tion transverse de F est une surface réelle Z ⊂ P2 \ S de classe C1 et transverse à F en
tout point. Une telle surface hérite naturellement des structures transverses du feuille-
tage F et, en particulier, d’une structure de surface de Riemann. Dans la suite, on munit
les sections transverses de l’orientation induite par leur structure de surface de Riemann.

11.1. Des sections transverses toriques. — Commençons par donner des exemples de
sections transverses dans les voisinages arbitrairement petits des singularités hyperbo-
liques.

Lemme 11.1. — Étant donné un feuilletage algébrique F de P2, au voisinage de toute singu-

larité hyperbolique de F , il existe une section transverse arbitrairement proche de la singularité qui est

biholomorphe à la courbe elliptique C/(Zλ + Zμ), où λ et μ sont les valeurs propres d’un champ de

vecteurs définissant F .

Démonstration. — On reprend les notations de la démonstration du lemme 4.11. La
restriction de l’intégrale première (4.7) à la surface torique d’équation T = {|u| = |v| = r1}
avec 0 < r1 < r induit un biholomorphisme entre T et C/(Zλ + Zμ). □

Une généralisation de cette méthode permet de construire une section transverse
torique dans le voisinage de n’importe quel lacet d’holonomie hyperbolique. Rappelons
qu’un lacet γ : S1 → F de classe C1 contenu dans une feuille d’un feuilletage algébrique
complexe F sur P2 est dit d’holonomie hyperbolique si la dérivée de l’application d’ho-
lonomie associée à γ est un nombre complexe de module différent de 1.

Lemme 11.2. — Étant donné un lacet d’holonomie hyperbolique γ dans une feuille d’un feuille-

tage transversalement holomorphe de codimension complexe un, il existe une section transverse torique dans

un voisinage arbitrairement petit autour de γ .

Démonstration. — Quitte à considérer une sous-variété de dimension 3 transverse
au feuilletage et contenant γ , on peut supposer que la variété M est de dimension réelle 3,
et que le feuilletage est de dimension réelle 1 et transversalement holomorphe. Il est donc
défini par un champ de vecteurs X non singulier, au moins dans un voisinage suffisam-
ment petit de γ . Quitte à changer l’orientation de ce dernier, on peut supposer également
que l’holonomie de γ dans le sens défini par X est contractante. Dans ce cas, il est bien
connu qu’il existe une métrique adaptée gN sur le fibré normal NRF de F qui est stricte-
ment contractée par le flot induit par X en tout temps strictement positif. En considérant
une métrique sur M qui induit la métrique gN sur NRF , pour ε > 0 suffisamment petit,
la surface constituée des points à distance ε de γ est transverse à F . □



234 AURÉLIEN ALVAREZ, BERTRAND DEROIN

11.2. Caractéristique d’Euler. — Notons que H2(P2,Z) est cyclique infini engendré
par la classe d’homologie d’une droite projective complexe P1 : ainsi, pour toute section
transverse Z compacte, il existe un entier dZ tel que la classe d’homologie [Z] de Z soit
[Z] = dZ[P1]. Cet entier est appelé le degré de Z.

Lemme 11.3. — Étant donné un feuilletage algébrique complexe F de degré d de P2, toute

section transverse compacte Z est de degré dZ = 0 ou dZ = 1 − d. Si Z a une composante connexe de

caractéristique d’Euler non nulle, alors celle-ci est unique et de genre d(d+1)

2 .

Démonstration. — Cela résulte des isomorphismes naturels

TRZ � (

NRF
)

|Z et NRZ � (

TRF
)

|Z,

ce qui donne, étant donné que dans la partie régulière on a NRF � NF et TRF � TF

χ(Z) = [NF ] · [Z] et [Z]2 = [TF ] · [Z].
Dans ces formules, χ est la caractéristique d’Euler, les crochets désignent les classes de
Chern des fibrés en droites complexes correspondant et on note · le produit d’intersec-
tion, ou la dualité selon le point de vue. Comme NF =O(d +2) et TF =O(1− d) pour
un feuilletage de degré d , on obtient les formules

χ(Z) = (d + 2)dZ et d2
Z = (1 − d)dZ.

On a donc dZ = 0 ou dZ = 1 − d . Par ailleurs, ces formules montrent qu’une composante
connexe de Z de caractéristique d’Euler non nulle a un degré non nul. Puisque la forme
d’intersection sur H2(P2,Z) est non dégénérée, une telle composante est unique. □

Le degré d’une courbe de P2 étant strictement positif, une section transverse com-
pacte n’est donc jamais une courbe algébrique de P2, sauf si le degré du feuilletage est
nul.

Certains feuilletages algébriques complexes de P2 ne possèdent pas de section
transverse compacte : c’est par exemple le cas des pinceaux de Lefschetz (autres que les
pinceaux de droites). En effet, si pour un tel pinceau f : P2 --￫ P1 il existait une section
transverse Z, la restriction de f à Z serait un revêtement de Z sur P1, ce qui montrerait
que Z est une union disjointe de sphères et contredirait le lemme 11.3.

Pour d’autres feuilletages algébriques complexes du plan projectif, il existe des sec-
tions transverses toriques mais pas de section transverse de caractéristique d’Euler non
nulle : c’est par exemple le cas des feuilletages qui admettent une courbe algébrique in-
variante et qui ont quelque part un lacet d’holonomie hyperbolique.

Lemme 11.4. — Soit F un feuilletage algébrique de degré d ≥ 1 du plan projectif complexe

ayant une courbe algébrique invariante A. Alors toute section transverse compacte de F est un tore qui ne

rencontre pas A.
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Démonstration. — Soit Z une section transverse de F . Comme les indices d’inter-
section d’une section transverse avec une feuille sont égaux à 1, on a dA · dZ = [A] · [Z] =
|A ∩ Z|. Le degré d’une courbe algébrique étant strictement positif, on en déduit que dZ

est positif ou nul, et est nul si et seulement si A n’intersecte pas Z. Or nous avons vu que
la caractéristique d’Euler d’une section transverse est soit nulle soit strictement négative
et que, dans ce dernier cas, son degré est strictement négatif (voir la démonstration du
lemme 11.3). □

Un problème intéressant serait d’étudier les feuilletages algébriques de P2 admet-
tant une section transverse compacte de caractéristique d’Euler non nulle : il nous semble
plausible qu’une condition nécessaire et suffisante soit l’absence d’une courbe algébrique
invariante (le lemme 11.4 montre qu’il s’agit d’une condition nécessaire).

11.3. Connexité.

Proposition 11.5. — Soit F un feuilletage algébrique complexe de P2 de degré d ≥ 2 satisfai-

sant les propriétés PB et PS. Alors la section transverse B formée par l’ensemble des points critiques de W
le long des feuilles régulières de F est une surface de Riemann compacte connexe de genre d(d+1)

2 et de

degré 1 − d.

Démonstration. — On déduit des propriétés PB et PS que le champ W est la par-
tie réelle d’une section lisse du fibré tangent à F qui s’annule exactement sur B et, de
plus, transversalement. Comme les singularités de W le long des feuilles sont des puits,
l’orientation de B induite en tant que section transverse à F coïncide avec l’orientation
en tant qu’intersection des graphes de la section nulle et de la section lisse ci-dessus dans
l’espace total du fibré tangent à F . Par conséquent, la classe d’homologie de B est celle
de TF �O(1 − d) ; son degré est donc 1 − d �= 0.

D’après le lemme 11.3, il suffit d’établir que B n’a pas de composante connexe de
genre 1. Supposons que ce soit le cas et notons C ⊂ B une telle composante ; C est alors
une courbe elliptique. Le saturé de C par F est un ouvert que l’on notera DC.

Lemme 11.6. — Il existe une section transverse torique T qui intersecte à la fois DC et Dc
C.

Démonstration. — La frontière ∂DC de DC est saturée par les feuilles de F et n’est
pas contenue dans l’ensemble singulier de F . En effet, si tel était le cas, ∂DC étant
connexe, il serait réduit à une singularité s de F . Il en résulterait que les deux sépara-
trices de s seraient contenues dans DC. Ces dernières seraient alors simplement connexes
d’après le théorème 5.1 donc des courbes rationnelles passant par la singularité. Or le
feuilletage ne peut posséder de courbe algébrique invariante puisqu’il admet une section
transverse de caractéristique d’Euler non nulle (lemme 11.4).

Considérons alors l’unique ensemble pseudo-minimal M ⊂ P2 contenu dans ∂DC.
Il s’agit d’un ensemble fermé, saturé par le feuilletage, non réduit à un sous-ensemble de
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singularités et minimal pour ces propriétés. En particulier, toute feuille F de F contenue
dans M est dense dans M. Un tel ensemble existe, il suffit de considérer un ensemble
minimal pour la restriction du feuilletage à P2 \ Int(US) qui est contenu dans ∂DC (ce
dernier intersecte le complémentaire de US car il est saturé par F et n’est pas contenu
dans l’ensemble singulier) puis de saturer l’ensemble obtenu par F . Comme M n’est pas
réduit à une courbe algébrique invariante, un point régulier de M n’est jamais transver-
salement isolé dans M. L’unicité résulte du fait que le complémentaire d’un ensemble
pseudo-minimal est un ouvert de Stein [25] mais nous n’utiliserons pas ce point.

Dans le cas où M contient une singularité s de S, la section transverse torique
construite au lemme 11.1 convient. En effet, puisque M ne contient pas de point trans-
versalement isolé dans sa partie régulière, l’intersection de M avec une petite boule autour
de s ne peut être réduit aux deux séparatrices de F en s, et donc intersecte T. Aussi, l’ou-
vert DC accumule sur s et, en particulier, intersecte T. Comme M et DC sont disjoints,
cela prouve bien que T intersecte à la fois DC et Dc

C.
Supposons maintenant que M ne contient aucune singularité de F . Dans ce cas,

un théorème de Bonatti, Langevin et Moussu [4] (voir également [10] ainsi que le théo-
rème 9.5 qui offrent des démonstrations alternatives) montre qu’il existe un lacet d’holo-
nomie hyperbolique γ contenu dans M. Dans ce cas, la section transverse torique associée
à γ , dont la construction est expliquée au lemme 11.2, convient. En effet, T intersecte DC

puisque DC est ouvert et accumule sur γ . De plus, T intersecte M, donc DC puisque γ

n’est pas transversalement isolé dans M. □

Nous sommes maintenant en mesure d’achever la démonstration de la proposi-
tion 11.5. Soit T la section transverse torique construite au lemme 11.6 et soit U l’ouvert
de T défini par U := T ∩ DC. Ce dernier est un ouvert non vide strict de T. Considé-
rons l’application P : DC → C qui, à un point de DC, associe l’unique point de C situé
dans la même feuille de F . Cette application est bien définie en vertu du théorème 5.1 et
sa restriction à toute section transverse est un biholomorphisme local. La restriction PU

de P à U est donc un biholomorphisme local. Or la norme de la dérivée de PU (mesu-
rée vis-à-vis de la métrique hermitienne gN construite dans le parapraphe 6.2) tend vers
l’infini lorsqu’elle est évaluée en un point qui tend vers ∂U. Cela découle du corollaire
6.3. En parallélisant les courbes elliptiques T et C, la dérivée de PU définit une fonction
holomorphe P′

U : U → C∗ dont la norme tend vers +∞ lorsque l’on tend vers ∂U. Or
ceci est impossible en vertu du principe du maximum appliqué à la fonction 1/P′

U. □

Remarque 11.7. — On peut vérifier que la proposition 11.5 est également vraie
en degré 1. Par ailleurs, comme conséquence du lemme 11.4 et de la proposition 11.5,
on obtient une deuxième démonstration qu’un feuilletage algébrique complexe de P2 de
degré d ≥ 2 satisfaisant les propriétés PB et PS n’a pas de courbe algébrique invariante
(voir également corollaire 9.6).
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12. Démonstration du théorème principal

Nous allons déduire la stabilité structurelle du feuilletage de Jouanolou J2 en mon-
trant qu’il satisfait les propriétés PS et PB (théorème 10.1) puis nous allons montrer que B
est biholomorphe à la quartique de Klein.

12.1. Le groupe de symétrie de J2. — Le groupe Aut(J2) est le groupe des transfor-
mations projectives qui préservent J2. Il a été calculé par Jouanolou dans [17] : il s’agit
du groupe engendré par les transformations

(12.1) s = [y : z : x] et t = [

ζ x : ζ 2y : ζ 4z
]

où ζ est une racine 7-ième primitive de l’unité. La structure algébrique du groupe
Aut(J2) peut être complètement décrite par les relations entre s et t : toutes se déduisent
des trois relations suivantes

s3 = 1, t7 = 1, sts−1 = t2.

On en déduit que Aut(J2) se relève à un sous-groupe du groupe unitaire U(3) ⊂
GL(3,C), via le morphisme

(12.2) m : Aut(J2) → U(3)

qui à s associe m(s) = (y, z, x) et à t associe m(t) = (ζ x, ζ 2y, ζ 4z).

Lemme 12.1. — Le groupe Aut(J2) préserve le champ W et la courbe mixte B.

Démonstration. — Cela est dû au fait que les transformations m(s) et m(t) préservent
la classe projective du champ de Jouanolou J2 ainsi que la forme hermitienne standard
sur C3 et par suite la fonction f (p) := − log‖p‖2. □

12.2. La propriété PS.

Lemme 12.2. — Le feuilletage de Jouanolou J2 vérifie la propriété PS.

Démonstration. — Le point [1 : 1 : 1] est une singularité de J2 en laquelle J2(p) = p.
Dans la carte affine {z �= 0}, en notant u, v les coordonnées définies par x = uz et y = vz,
le feuilletage est donné par le champ de vecteurs

X = (

v2 − u3
) ∂

∂u
+ (

1 − u2v
) ∂

∂v

dont les valeurs propres sont λ± = −2 ± i
√

3. Elles sont linéairement indépendantes
sur R et ont chacune une partie réelle strictement négative. Ainsi la singularité [1 : 1 : 1]
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est hyperbolique et, d’après le lemme 4.9 et sa démonstration, le champ W est égal à
−2
3 �(X) à l’ordre 1. En particulier, [1 : 1 : 1] est une source pour W. Le lemme 12.1

nous permet de déduire que les autres singularités de J2 sont également des sources
pour W. □

12.3. La propriété PB.

Proposition 12.3. — La courbe mixte B (corollaire (4.4)) d’équation

(12.3) xȳ2 + yz̄2 + zx̄2 = 0

est transverse à J2. De plus, le feuilletage de Jouanolou J2 vérifie la propriété PB, c’est-à-dire

[x : y : z] ∈ B =⇒ 2
∣
∣x̄yz2 + ȳzx2 + z̄xy2

∣
∣ < |x|4 + |y|4 + |z|4.

Le problème étant invariant par la symétrie s donnée par (12.1), on peut supposer z

de module maximal. Il suffit dans ce cas de démontrer l’inégalité ci-dessus en tout point
(x, y, z) satisfaisant l’équation xȳ2 + yz̄2 + zx̄2 = 0 et vérifiant |z| �= 0, ainsi que les deux
inégalités |x| ≤ |z| et |y| ≤ |z|. Posons alors u = x/z et v = y/z et considérons les deux
fonctions

F(u, v) = uv̄2 + v + ū2 et G(u, v) = ūv + v̄u2 + uv2

|u|4 + |v|4 + 1
.

En notant D le disque unité de C, la proposition 12.3 suit du lemme suivant.

Lemme 12.4. — Pour tout p de D × D, si F(p) = 0 alors |G(p)| < 1/2.

Nous allons à présent voir comment ramener le lemme 12.4 à la vérification d’un
nombre fini d’inéquations sur les entiers.

Pour tout entier naturel N non nul, on désigne par ΓN = 1
NZ[i], où Z[i] est l’an-

neau des entiers de Gauss et par DN = ρND le disque de rayon ρN = 1 + 1
N . On note

également

CF(N) = sup
DN×DN

‖dF‖ et CG(N) = sup
DN×DN

‖dG‖

les bornes supérieures sur le bi-disque DN × DN (muni de sa structure hermitienne stan-
dard) des normes d’opérateurs des différentielles dF et dG. On définit enfin l’ensemble

(12.4) EN =
{

(U,V) ∈ Z[i]2 ;
{ |U| ≤ N + 1 et |V| ≤ N + 1

|UV̄2 + N2V + NŪ2| ≤ N2CF(N)

}

et la condition CN

(12.5) ∀Q ∈ EN, N
∣
∣NŪV + V̄U2 + UV2

∣
∣ <

(
1
2

− CG(N)

N

)
(|U|4 + |V|4 + N4

)

.
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Lemme 12.5. — S’il existe un entier naturel N non nul tel que la condition CN soit satisfaite,

alors le lemme 12.4 est également satisfait.

Démonstration. — Soit N un entier naturel non nul tel que la condition CN soit
satisfaite. Tout nombre complexe w est à une distance inférieure ou égale à 1/

√
2N de ΓN

puisque Nw est à distance au plus de 1/
√

2 d’un entier de Gauss. Soit p = (u, v) un point
de D × D tel que F(p) = 0 et q un point de ΓN × ΓN dont chacune des coordonnées est à
une distance inférieure ou égale à 1/

√
2N de celles de p. On a donc ‖p − q‖2 ≤ 1/N et,

d’après le théorème des accroissements finis,

∣
∣F(q)

∣
∣ = ∣

∣F(q) − F(p)
∣
∣ ≤ CF(N)

N
.

En notant Q = Nq = (U,V) ∈ Z[i]2, l’inégalité précédente se réécrit
∣
∣UV̄2 + N2V + NŪ2

∣
∣ ≤ N2CF(N).

Le point Q appartient donc à EN puisque, d’après l’inégalité triangulaire, |U| et |V| sont
inférieurs ou égaux à N + 1/

√
2, donc à N + 1. On déduit alors de la condition CN que

∣
∣G(q)

∣
∣ <

1
2

− CG(N)

N

et, toujours d’après le théorème des accroissements finis,

∣
∣G(p)

∣
∣ ≤ ∣

∣G(q)
∣
∣ + CG(N)

N
<

1
2
. □

Nous allons à présent donner des estimations des constantes CF(N) et CG(N). Pour
cela, en tout point (u, v) du bi-disque DN × DN, la différentielle de F est donnée par

dF(u, v) = v̄2du + 2ūdū + dv + 2uv̄dv̄,

ce qui fournit l’estimation suivante

∣
∣dF(u, v)

∣
∣ ≤ 3ρ2

N

(|du| + |dv|) ≤ 3ρ2
N

√
2
√|du|2 + |dv|2,

d’où finalement CF(N) ≤ 3
√

2ρ2
N. Notons P et Q respectivement le numérateur et le

dénominateur de la fonction G = P/Q ; on a alors dG = dP
Q − PdQ

Q2 . Les différentielles
de P et Q sont données par

{

dP(u, v) = (v2 + 2uv̄)du + vdū + (ū + 2uv)dv + u2dv̄

dQ(u, v) = 2uū2du + 2u2ūdū + 2vv̄2dv + 2v2v̄dv̄,
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d’où les estimations
∣
∣dP(u, v)

∣
∣ ≤ 4ρ2

N

√
2
√|du|2 + |dv|2 et

∣
∣dQ(u, v)

∣
∣ ≤ 4ρ3

N

√
2
√|du|2 + |dv|2.

On en déduit alors
∣
∣dG(u, v)

∣
∣ ≤ 4

√
2ρ2

N + 12
√

2ρ6
N et donc CG(N) ≤ 4

√
2ρ2

N

(

1 + 3ρ4
N

)

.

Dans une dernière étape, nous allons ramener la démonstration du lemme 12.4,
et par suite celle de la proposition 12.3, à des calculs uniquement sur des entiers naturels.
Pour cela, nous définissons l’ensemble

(12.6) EN =
{

(U,V) ∈ Z[i]2 ;
{ |U|2 ≤ (N + 1)2 et |V|2 ≤ (N + 1)2

|UV̄2 + N2V + NŪ2|2 ≤ 18(N + 1)4

}

et la condition

(12.7) CN = ∀Q ∈ EN, 10N2
∣
∣NŪV + V̄U2 + UV2

∣
∣

2
<

(|U|4 + |V|4 + N4
)2

.

Lemme 12.6. — S’il existe un entier naturel N ≥ 54 tel que la condition CN soit satisfaite,

alors la condition CN est également satisfaite.

Démonstration. — Soit N un entier naturel non nul tel que la condition CN soit
satisfaite. Soit Q = (U,V) un élément de l’ensemble EN. Nous avons calculé, à la suite de
la démonstration du lemme 12.5, la majoration CF(N) ≤ 3

√
2ρ2

N de laquelle on déduit
que (N2CF(N))2 ≤ 18(N + 1)4, et finalement que Q appartient à l’ensemble EN. On
déduit alors de la condition CN que

∣
∣NŪV + V̄U2 + UV2

∣
∣ <

1√
10N

(

N4 + |U|4 + |V|4).

En utilisant à présent la majoration CG(N) ≤ 6ρ2
N(1 + 3ρ4

N) calculée précédemment et le
fait que le membre de droite de cette inégalité est une fonction décroissante de N tendant
vers 24, on laisse au lecteur le soin de vérifier que

1√
10N

≤ 1
2

− CG(N)

N
,

dès lors que N est au moins égal à 54, ce qui termine la démonstration. □

Lemme 12.7. — La condition C145 est vérifiée.

Démonstration. — La démonstration du lemme se réduit à vérifier un ensemble fini
d’inégalités sur les entiers naturels. □
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Pour conclure cette section, nous indiquons quelques données numériques à pro-
pos de la condition C145 et de la condition C150 que nous avons également vérifiée. Rap-
pelons qu’il s’agit d’un ensemble d’inégalités de la forme ι(U,V) ≤ κ(U,V).

Condition C145 :

– nombres d’inégalités à vérifier = 3 329 227
– maxE145{ι(U,V)} = 371 887 603 636 416 250 (< 259)

– maxE145{κ(U,V)} = 1 815 000 825 762 712 225 (< 261)

– minE145{κ(U,V) − ι(U,V)} = 22 039 448 963 015 524 (< 255)

– maxE145{ ι(U,V)

κ(U,V)
} � 0.935442548319427

Les inégalités étant indépendantes les unes des autres, il est possible de distribuer le calcul
et effectuer les vérifications en quelques dizaines de secondes.

Condition C150 :

– nombres d’inégalités à vérifier = 3 558 612
– maxE150{ι(U,V)} = 486 516 872 673 000 000 (< 259)

– maxE150{κ(U,V)} = 2 385 954 719 278 502 464 (< 262)

– minE150{κ(U,V) − ι(U,V)} = 29 998 373 501 278 096 (< 255)

– maxE150{ ι(U,V)

κ(U,V)
} � 0.932602375568296

Remarque. — Notons que tous les entiers naturels en jeu ici sont strictement in-
férieurs à 264 et qu’il est donc possible d’implémenter un algorithme de vérification de
ces inégalités sur une architecture informatique classique de 64 bits dans un langage de
programmation standard. En particulier, le recours à des langages de programmation
permettant d’écrire des programmes manipulant de « grands entiers » n’est pas néces-
saire ici.

12.4. La section transverse B est biholomorphe à la quartique de Klein.

Proposition 12.8. — Toute surface de Riemann de genre 3 qui contient une copie de Aut(J2)

dans son groupe d’automorphismes est biholomorphe à la quartique de Klein

(12.8) xy3 + yz3 + zx3 = 0.

Démonstration. — Notons C une telle surface de Riemann et soit i : Aut(J2) →
Aut(C) un morphisme injectif. Soit L = Ω1(C)∗ et c : C → P(L) l’application canonique
qui, à un point p ∈ C, associe la classe projective de l’évaluation d’une 1-forme holo-
morphe en un vecteur tangent non nul en p. Cette application est équivariante vis-à-vis
d’une représentation linéaire ρ : Aut(C) → GL(L).

Lemme 12.9. — ρ est injective.
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Démonstration. — Il est bien connu que c est un plongement si C n’est pas hyper-
elliptique et un revêtement ramifié double sur une conique de P(L) si c’est une courbe
hyperelliptique ([1]). En particulier, étant donné que le groupe Aut(J2) ne possède aucun
élément d’ordre 2, la représentation linéaire ρ est injective. □

Lemme 12.10. — ρ est conjuguée à la représentation γ ◦ m où γ est l’automorphisme de

GL(3,C) induit par un automorphisme de Galois.

Démonstration. — La relation sts−1 = t2 montre que l’application ρ(s−1) permute les
espaces propres de ρ(t) en envoyant Ker(ρ(t)−λ) sur Ker(ρ(t)−λ2). Ainsi, le spectre de
ρ(t) est formé de trois valeurs propres distinctes de la forme λ, λ2, λ4 pour une certaine
racine 7-ième de l’unité λ. Dans certaines coordonnées de L, on a donc

ρ(s) = (y, z, x) et ρ(t) = (

λx, λ2y, λ4z
)

.

Ainsi ρ est conjugué à la représentation induite par l’automorphisme de Galois qui en-
voie ζ sur λ. □

Lemme 12.11. — Dans certaines coordonnées sur L, les équations quartiques projectivement

invariantes par le groupe ρ ◦ i(Aut(J2)) sont données par

(12.9) xy3 + yz3 + zx3 = 0.

Démonstration. — À cause du lemme 12.10, il suffit de montrer que les équations
quartiques projectivement invariantes par le groupe m(Aut(J2)) sont à multiplication
par une constante près de la forme

(12.10) xy3 + ηyz3 + η2zx3 = 0

où η est une racine cubique primitive de l’unité. En effet, elles sont toutes équivalentes à
(12.9) par la transformation linéaire (x, ηy, η2z).

Soit P ∈ C[x, y, z] un polynôme non nul homogène de degré 4 projectivement
invariant par le groupe m(Aut(J2)), c’est-à-dire que P ◦ m(g) = u(g)P pour un certain
morphisme u : Aut(J2) → C∗. Comme t appartient au groupe dérivé de Aut(J2), on a
u(t) = 1. Décomposons le polynôme P en une combinaison linéaire de monômes P =
∑

α,β,γ Pα,β,γ xαyβzγ , où α, β , γ décrivent toutes les partitions de quatre. Comme P ◦
m(t) = P, on déduit que Pα,β,γ = 0 dès que α + 2β + 4γ n’est pas un multiple de 7.
De plus, comme P ◦ m(s) = u(s)P avec u(s) �= 0, on déduit que l’annulation de Pα,β,γ est
invariante par permutation cyclique de α, β , γ . Ces deux observations montrent que
les seuls monômes apparaissant dans la décomposition de P sont associés aux partitions
(α,β, γ ) ∈ {(1,3,0), (0,1,3), (3,0,1)}, donc P est projectivement équivalent à (12.10)
avec c = u(s). □
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Nous sommes maintenant en mesure de terminer la démonstration de la propo-
sition 12.8. En effet, l’image de C par l’application canonique est une courbe (comptée
avec multiplicité) de degré 4 dont l’équation quartique est projectivement invariante par
ρ ◦ i(Aut(J2)). Dans certaines coordonnées, cette équation est (12.9) d’après le lemme
12.11, ce qui montre que c(C) est la quartique de Klein (12.8) et que c induit un biholo-
morphisme entre C et cette dernière. □

Corollaire 12.12. — Le quotient de l’ensemble de Fatou F(J2) par J2 est biholomorphe à la

quartique de Klein.

Démonstration. — Ce quotient est biholomorphe à la courbe mixte B d’équation
(12.3) munie de la structure complexe induite par J2. Comme B est une surface ana-
lytique réelle lisse non vide et non holomorphe, elle est Zariski dense sur C dans P2 et
par suite le groupe Aut(J2) agit fidèlement sur B. Son action sur B étant holomorphe, le
corollaire est une conséquence de la proposition 12.8. □

FIGURE 2. — Maximum de Rp sur la surface Bp en fonction de p
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FIGURE 3. — Intersection de l’ensemble de Julia du feuilletage de Jouanolou de degré d avec une sphère entourant une
singularité
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13. Expérimentations numériques et images

13.1. Stabilité structurelle en degré d > 2. — Par un calcul analogue à celui détaillé
dans le lemme 12.2, on démontre que le feuilletage de Jouanolou de degré d > 2 vérifie
la propriété PS. Quant à la propriété PB, les choses sont plus délicates puisque celle-ci
dépend du choix d’une fonction mesurant la distance infinitésimale entre les feuilles. La
fonction − log‖ · ‖ ne convient pas pour d ≥ 3 mais nous avons pu vérifier numérique-
ment pour les degrés 3 ≤ d ≤ 5 que d’autres fonctions conviennent, en l’occurrence les
fonctions − log‖ · ‖p pour des p bien choisis dépendant de d . Plus précisément, les dessins
de la figure 2 montrent que, pour 2 ≤ d ≤ 5, il existe un intervalle de normes �p pour
lesquelles l’inégalité de transversalité est satisfaite. Sur chaque dessin de la figure 2, on
lit en abscisse la valeur de p et en ordonnée le maximum sur la surface Bp (analogue de

l’équation (4.4) pour la fonction − log‖ · ‖p) du rapport Rp = | ∂2‖·‖p
p

∂ t2
|/∂2‖·‖p

p

∂ t∂ t̄
. D’après la dé-

monstration du lemme 4.6, la propriété PB est donc satisfaite pour la fonction − log‖ · ‖p

si et seulement si ce rapport Rp est strictement inférieur à 1.
La proposition (12.3) donne une démonstration formelle de la propriété PB pour

le couple degré-norme (d = 2, p = 2) et, par ailleurs, on constate numériquement qu’en
plus de (d = 2, p = 2), les couples (d = 3, p = 3), (d = 4, p = 4) et (d = 5, p = 5)

conviennent aussi. Ce sont ces expérimentations numériques qui nous permettent de
conjecturer la stabilité structurelle du feuilletage de Jouanolou en degré d > 2.

13.2. Ensemble de Julia transversalement Cantor. — Les dessins de la figure 3 montrent
l’intersection de l’ensemble de Julia du feuilletage de Jouanolou de degré 2 ≤ d ≤ 5 avec
une sphère bordant le voisinage de l’une des singularités et invariante par la symétrie s

d’ordre 3 (éq. (12.1)). Nous avons produit des dessins analogues jusqu’en degré d = 9
(ainsi que des visualisations en 3D pour en apprécier plus finement les détails). Ce sont ces
images et d’autres travaux en cours qui nous permettent de conjecturer que l’ensemble
de Julia est transversalement un ensemble de Cantor en tout degré d ≥ 2.
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