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RESUME

Nous démontrons que le feuilletage de Jouanolou de degré 2 sur le plan projectif complexe est structurellement
stable. De plus, son ensemble de Fatou est une fibration holomorphe sur la quartique de Klein ayant une structure de fibré
lisse localement trivial en disques. En particulier, aucune feuille de [J, n’est dense dans P2,
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1. Introduction et énoncé du théoréme principal

Soit F, 'espace des feuilletages algébriques complexes de degré d sur le plan pro-
jectif complexe P?. Mieux comprendre la décomposition de la variété projective F, sui-
vant les propriétés dynamiques et topologiques des feuilletages algébriques reste un pro-
bléme largement ouvert dés que d > 2. Le présent travail se propose d’y apporter une
contribution nouvelle et, en un certain sens, inattendue.

Dans un travail célébre [16], présenté lors de 'ICM 1978 et qui repose en partie
sur les articles de Hudaj-Verenov [15] et Mjuller [20], II'yashenko démontre que presque
tout (vis-a-vis de la mesure de Lebesgue) feuilletage de F,; qui contient une droite projec-
tive invariante est structurellement rigide, ergodique et minimal. Ce travail a inspiré de
nombreux auteurs, parmi lesquels Scherbakov [24], Cerveau [8], Ghys [12], Nakai [21],
Camacho et de Figueiredo [6], ainsi que Loray et Rebelo [19]. Ces derniers montrent
qu’il existe un ouvert non vide de F,; formé de feuilletages structurellement rigides, mi-
nimaux, et ergodiques, en s’affranchissant de I’hypothese portant sur Iexistence d’une
droite projective invariante.

Le résultat que nous présentons ici s’oppose radicalement a tous ces travaux : nous
exhibons une composante de stabilité non triviale dans Fy, c’est-a-dire un ouvert formé de
feuilletages tous topologiquement conjugués les uns aux autres; de plus, nous montrons
que les feuilletages appartenant a cette composante de stabilité n’ont aucune feuille dense
et ne sont pas ergodiques. Plus précisément, on désigne par J, le champ de vecteurs de
Jouanolou de degré d défini dans les coordonnées cartésiennes (x, », z) de G* par

.9 .9 .9
(1.1) Ji(ey, ) =)' —+ =+« —.
Jx dy 4z
Ce champ est homogéne de degré d et définit donc un feuilletage J; du plan projectif
complexe. Jouanolou a montré dans [17] que J; n’a pas de feuille algébrique invariante
lorsque d > 2 et qu’il en est ainsi pour un feuilletage générique de F,.

Théoreme. — Le feuilletage Jy du plan projectif complexe P* est structurellement stable. De
plus, son ensemble de Fatou est une fibration' sur la quartique de Klein ayant une structure de fibré lisse
localement trivial en disques. En particulier, aucune feuille de Jy n'est dense dans P°.

Dire que le feuilletage J5 est structurellement stable signifie qu’il existe un voisi-
nage V de J, dans F, tel que tout feuilletage dans V est topologiquement conjugué a Js.
Le lieu de stabilité dans Fy est par définition 'ensemble des feuilletages algébriques struc-
turellement stables. Nous conjecturons que, modulo 'action de PGL;(C), Iapplication
qui, a un feuilletage du domaine de stabilité¢ de F, associe le quotient de son domaine
de Fatou, est un revétement de 'espace des modules des courbes algébriques lisses de
genre 3.

! Nous appelons fibration un morphisme surjectif a fibres connexes entre deux variétés complexes.
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FiGure 1. — Intersection de ’ensemble de Julia du feuilletage de Jouanolou de degré 2 avec une sphére entourant une
singularité

Concernant ensemble de Julia, défini comme le complémentaire de I’ensemble
de Fatou, nous conjecturons qu’il est de mesure nulle® et transversalement un ensemble
de Cantor (figure 1). Cette conjecture, étayée par des expérimentations numériques (sec-
tion 13), impliquerait que le feuilletage de Jouanolou est intégrable en dehors d’un en-
semble fermé de mesure nulle.

Nous montrons également que les feuilles du feuilletage J, sont simplement
connexes, sauf un nombre dénombrable d’entre elles qui sont des anneaux (section 9.3).
En vertu du théoreme principal ci-dessus, nous sommes donc en mesure de valider la
conjecture d’Anosov (qui décrit ainsi la topologie des feuilles pour un feuilletage géné-
rique du plan projectif complexe) pour des feuilletages appartenant & un ouvert non vide
de Fs.

Nous remercions chaleureusement Serge Cantat, Dominique Cerveau, Yuljj Ilya-
shenko, Etienne Ghys, Alexey Glutsyuk, Xavier Gomez-Mont, Adolfo Guillot, Samuel
Lelievre, Frank Loray, Jorge Pereira, Bruno Sévennec pour les nombreuses discussions
que 'on a pu avoir a propos de ce travail. Nous remercions également le rapporteur pour
sa relecture tres soigneuse qui nous a notamment permis de préciser la rédaction de plu-
sieurs points techniques, ainsi que d’ajouter une démonstration alternative (corollaire 9.6)
et la remarque 9.7.

2 En utilisant les propriétés d’hyperbolicité que nous établissons dans cet article, il suffirait de montrer que I'en-
semble de Julia est d’intérieur vide pour en déduire qu’il est de mesure nulle.
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2. Stratégie pour démontrer le théoréme de stabilité structurelle

Un feuilletage algébrique complexe F de degré d du plan projectif complexe est
le projectivisé¢ du feuilletage Fy de C® défini par un champ de vecteurs V homogéne
de degré d que 'on peut toujours supposer de divergence nulle (lemme 4.1). De plus, le
lieu des points ou V et le champ radial R sont colinéaires est une union finie de droites
vectorielles qui définissent 'ensemble singulier S de F. Dans la suite, on considére un
feuilletage F défini par un champ homogéne V de degré d, de divergence nulle et qui ne
s’annule pas sur G\ {0}.

Commencons par énoncer un critére qui assure I’existence d’un ensemble errant
pour le feuilletage F (section 5). Sur chaque feuille de Fv, considérons la restriction
de la fonction —log]|| - ||, ou || - || est la norme hermitienne standard. Il s’agit d’une
fonction strictement sur-harmonique, sauf le long des feuilles radiales de Fy ou elle est
harmonique. Ses points critiques définissent 'ensemble algébrique réel B := {R - V = 0},
ou - désigne le produit hermitien. Les points de B sont non dégénérés d’indice égaux a 1
ou 2 suivant que |DV(V) - R| > [[V]|? ou |IDV(V) - R| < ||V]||? (lemme 4.6). Notre critére

met en jeu la propriété suivante.

Propriété Py (déf. 4.7) : Le champ V ne s’annule pas sur G* \ {0} et les points critiques de la
restriction de la fonction — log || - || le long des trajectoires de V dans G\ {0} sont non dégénérés d’indice
égaux a 2.

Sous I’hypothese Py, la variété algébrique réelle B C G\ {0} est lisse et transverse
au feuilletage Fy ; par conséquent la surface algébrique réelle B := IT(B) C P? est une
section transverse” au feuilletage F. Une telle section transverse hérite d’une structure
holomorphe induite par la structure holomorphe transverse du feuilletage F ([3]).

Proposition 2.1. — St 'V satisfait la propriété Py, alors les trajectoires de V' passant par les
points de B sont des disques proprement plongés dans C> et L'union de ces trajectoires est un_fibré lisse
localement trivial en disques au-dessus de B.

La démonstration de la premiére partie de cette proposition se trouve au para-
graphe 5. L’étude de la décomposition Fatou/Julia est faite a la partie 7 et celle de la
topologie des sections transverses des feuilletages de P* a la partie 11.

L’un des outils principaux est I’étude du gradient de la fonction —log || - || le long
des trajectoires du champ V vis-a-vis d'une métrique hermitienne sur les feuilles de Fy
qui est invariante par multiplication par les scalaires (section 4.2) : le champ de vecteurs W
ainsi construit sur G \ {0} induit un champ de vecteurs analytique réel W sur P? appelé
le champ réel (section 4.3). Il est par définition tangent a F et s’annule sur 'union de
I’ensemble B et de ’ensemble singulier de F. Observons que sous ’hypothése Py, les

% Une section transverse a un feuilletage est une sous-variété réelle transverse au feuilletage et de dimension égale
a la codimension réelle du feuilletage.
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points de B sont des puits pour W en restriction a chaque feuille de F. Ainsi, B est un
attracteur pour le champ réel W.

Ce champ réel joue également un réle central pour établir la stabilité structurelle
lorsque la propriété Py ainsi que la propriété de répulsion Pg suivante sont satisfaites :

Propriété Ps (déf. 4.10) : Le champ V ne s’annule pas sur C* \ {0}, les singularités du_feuille-

tage F sont hyperboliques et chacune de ces singularités est une source pour le champ réel W.

Proposition 2.2. — Un_feuilletage algébrique de degré d de P* qui satisfait les propriétés Py
et Ps est structurellement stable. En d’autres termes, tout fewilletage algébrique F' de degré d quu est
suffisamment proche de F est topologiquement conjugué a F .

On commence par démontrer que ’ensemble errant construit a la proposition 2.1
est exactement ’ensemble de Fatou. La stabilité structurelle de 'ensemble de Fatou dé-
coule alors de la proposition 2.1 (la propriété Py est stable). La stabilité structurelle de
I’ensemble de Julia du feuilletage repose sur des propriétés d’hyperbolicité du champ W.
Ces propriétés sont établies dans la partie 6 : on construit une métrique compléte sur
P2 =P?\ (BUS) pour laquelle le feuilletage stable faible de W est le feuilletage F, alors
que le feuilletage instable faible® est un feuilletage réel de dimension 3 transverse a JF.
Nous en déduisons la stabilité structurelle de W par un théoréme de Robinson [23], ainsi
que la stabilité structurelle de 'ensemble de Julia du feuilletage F qui est aussi 'ensemble
d’attraction de ’ensemble non errant de W dans P2, 1l faut ensuite recoller les morceaux
pour établir la stabilité structurelle globale. Pour cela, nous construisons une action loca-
lement libre du groupe affine sur P2 dont les orbites sont les feuilles de la restriction de F
a P? (section 9). La stabilité structurelle est établie a la partie 10.

Pour conclure, nous montrons que le champ de Jouanolou en degré 2 satisfait
les propriétés Py et Ps puis, en utilisant les symétries du feuilletage, que la surface B est
biholomorphe a la quartique de Klein (proposition 12.8). La propriété Ps est élémentaire
et est établie au lemme 12.2. La propiété Py est plus délicate a établir : il s’agit de montrer
que, étant donné trois nombres complexes quelconques x, », z € G non tous nuls, on a
I'implication suivante

(2.1) AT+ =0 = 2| +r’ + 207 | < o'+ Pt + 12

A la partie 12, nous ramenons la démonstration de (2.1) 4 la vérification d’un nombre
fini d’inégalités explicites sur des entiers que I'on peut confier a un ordinateur.

11 s’agit d’un feuilletage réel de codimension 1 sur P2, dont la distribution tangente est continue, dont les feuilles
sont C*°, qui est le produit du feuilletage de Reeb par une droite au voisinage de chaque point de S et, localement, un livre
ouvert au voisinage des points de B.
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3. Notations

P? plan projectif complexe

I1: G\ {0} — P? application quotient

(0, 0,2 - (&, 9, 2)= xx + y] + 27 produit hermitien standard sur C*
V champ de vecteurs homogene sur G*

— Jo champ de Jouanolou sur G* (éq. (1.1))

Fv feuilletage induit par V

F quotient de Fy sur P?

Jo feuilletage de P? induit par J,

TF fibré tangent holomorphe a F

TRF fibré tangent réel a F (défini sur la partie réguliére rég(F) de F)

NF fibré normal holomorphe a F

NRF fibré normal réel a F (défini sur rég(F))

g métrique hermitienne sur TF (section 4.2)

g métrique relevée sur TFy (éq. (4.2))

W gradient le long des trajectoires de Fy de la fonction —log || - ||

W champ de vecteurs de P? obtenu comme projection de W, appelé champ réel
{®{y}ier flot induit par W

NzW:=TRF/RW

B section transverse (éq. (4.4))

Up voisinage tubulaire de B

S ensemble singulier de F

Us voisinage tubulaire de S

P2=P*\ (BUYS)

Py : voir déf. 4.7

Ps : voir déf. 4.10

F : restriction de F a la sous-variété A, i.e. défini par la distribution TANTRF
R feuilletage de dUg transverse a Fyy,

h métrique riemannienne sur P? adaptée a W

Fw s Fus Fut, Fi feuilletages stable fort, stable faible, instable fort, instable
faible du champ W (section 8.5)

D saturé de B par le feuilletage F appelé ensemble errant de F (section 5)
F(F),J(F) ensembles de Fatou et de Julia de F (section 7)

Répy (O) = {p | lim,, _o d(P}y(p), ) = 0} : ensemble de répulsion de [J pour
le champ W

Attw(O) = {p | lim,, o0 d(Piy(p), ) = 0} : ensemble d’attraction de U pour le
champ W

K =P?\ (Rép,,(S) UAttw(B)) : ensemble hyperbolique maximal (éq. (8.18))
Wr reparamétrage du champ W (éq. (9.2))

A" métrique hyperbolique sur TR Fp2 (éq. (9.9))



STABILITE STRUCTURELLE DU FEUILLETAGE DE JOUANOLOU DE DEGRE 2 197

— 7 : Aff(R) x P? — P? action du groupe affine (éq (9.7))

— 1, =7 (-, p) paramétrage des feuilles par Aff" (R) (¢q (9.8))

— V' perturbation de V, F feuilletage induit par V', W' champ réel induit par V'
(section 10.1)

— ¢ : P2 — P?’ conjugaison topologique orbitale de W a W’ (prop. 10.2)

— ¥ : P? — P2 modification de ¥

— B C F bande (i.e. composante connexe de F\ Atty(K)) (section 10.2)

— [: B — B’ homéomorphisme proche de I'identité (éq. (10.2))

4. Le champ réel et les propriétés Py et Ps

4.1. Feulletages de P*. — Le plan projectif complexe P? admet un fibré tangent
holomorphe TP? dont les sections locales sont les champs de vecteurs holomorphes lo-
caux sur P?. Il admet également un fibré tangent réel TRP? dont les sections sont les
champs de vecteurs réels. Un champ de vecteurs holomorphe s’étend naturellement en
une dérivation agissant sur les fonctions lisses a valeurs complexes. La partie réelle de
cette extension définit une dérivation réelle, c’est-a-dire un champ de vecteurs réel. Le
flot induit par la partie réelle d’'un champ de vecteurs holomorphe s’obtient par restric-
tion du flot induit par ce dernier aux temps réels, modulo le facteur multiplicatif 1/2. On
a un isomorphisme réel naturel entre le fibré tangent holomorphe et le fibré tangent réel,
induit par I'application qui a un champ de vecteurs holomorphe associe sa partie réelle.

Un feuilletage algébrique complexe de P? est la donnée d’un morphisme m :
TJF — TP? d’un fibré en droites holomorphe TF au-dessus de P> qui s’annule au-dessus
d’un ensemble fini de P? ([5]). Le fibré TF s’appelle le fibré tangent holomorphe de F, le
lieu o m s’annule 'ensemble singulier S de F et son complémentaire la partie réguliére
rég(F). Par définition, le degré d de F est le nombre de tangence de m(TF) avec une
droite générique de P? et on a alors TF >~ O(1 — d).

Nous dirons qu'un champ de vecteurs holomorphe défini sur un ouvert de P?
définit F s’il est I'image par m d’une section de TF qui ne s’annule en aucun point.
Dans la partie réguliere du feuilletage, les extensions analytiques maximales des germes
de courbes intégrales d’'un champ de vecteurs holomorphe définissant F forment des
courbes holomorphes immergées dans P? appelées les feuilles de F.

Dans la partie réguliere de F, les feuilles sont tangentes a la distribution TRF C
TRP?|,y7) définic comme 'image par l'identification naturelle TP? — TRP? du sous-
fibré m((TF)weer)) C TPQ‘rég(]:) ; observons que TRF est naturellement isomorphe a la
restriction du fibré tangent holomorphe TF a 'ensemble régulier de F.

De méme, on définit le fibré normal NF de F comme étant le dual du fibré associé
au faisceau des 1-formes holomorphes sur P? contenant m(TF) dans leur noyau (ce
faisceau est localement libre et donc bien associé¢ a un fibré en droites holomorphe [5]).
Dans la partie réguliere de F, ce fibré en droites s’identifie & TP?/m(TF) et donc au
fibré normal réel NRF := TRP? /TR F via l'identification naturelle TP* — TRP?,
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4.2. Projectivisation d’un champ homogene et métrique sur T F .

Lemme 4.1. — Elant donné un_feuilletage F sur P* de degré d, il existe un champ de vecteurs V
holomorphe homogéne de degré d sur C°, de divergence nulle et tel que la projectivisation du_feuilletage
Fv induite par V sur C*\ {0} est le feuilletage F. Ce champ est unique modulo multiplication par une
constante non nulle et 1l est colinéaire au champ radial seulement dans un nombre fini de directions de C*
dont les projectivisations sont les singularités de F .

Démonstration. — L’existence d’un champ de vecteurs V homogene de degré d, ra-
dial uniquement au-dessus du lieu singulier de F et tel que la projectivisation de JFv est
égale a F, se trouve dans [18]. Pour assurer que ’on peut trouver un tel champ V qui
soit de plus a divergence nulle, il suffit de considérer le champ

v div(V) R,
d+2
ouR = x% + y% + za% est le champ radial. L’unicité est évidente. U

On rappelle que le fibré tautologique O(—1) s’identifie 2 C* \ {0} en dehors de sa
section nulle. Le fibré tangent TF de F s’identifie alors a la puissance (¢ — 1)-iéme du
fibré tautologique via I’application homogene de degré (d — 1)

(4.1) p€C\ {0} > D,II(V(p) € Tng F

définie en dehors du lieu singulier de F. Dans cette formule, IT désigne I'application
quotient G* \ {0} — P2,
On notera g la métrique’ sur Ty définie par

4.2) (V) = lIplI*.

Cette métrique est invariante par multiplication par les scalaires sur C* \ {0} et définit
donc une métrique hermitienne sur TF que 'on note g.

Lemme 4.2. — On suppose que V ne s’annule pas sur G* \ {0} et que d > 2. Munies de la
mélrique hermitienne g, les feuilles de F sont des surfaces completes a courbure strictement négatives,
sauf les feuilles radiales qui sont isométriques a des cylindres bi-infinis euclidiens R*/[Z avec | > 0.

Démonstration. — Si g est une métrique hermitienne sur une surface de Riemann, sa
courbure s’exprime par —A,log || V||, ou V est un champ de vecteurs holomorphe local
quine s’annule pas. La formule (4.2) montre donc que la courbure de la métrique g le long
des feuilles de Fy est donnée par Pexpression —A;log 21471, Or la fonction log ||p]|*"

> Cette métrique est singuliére aux points ot V s’annule.
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est pluri-sous-harmonique, et strictement dans les directions autres que radiales, ce qui
montre que la courbure de la restriction de g aux feuilles de Fy est strictement négative.

Pour montrer la complétude, il suffit de constater que, sil’on introduit la métrique
hermitienne standard gy sur G*, on a 'inégalité a||p]|* < g V), < Bllpl1** valable pour
certaines constantes o, f > 0 indépendantes de p. Par conséquent, on obtient

;&0 ~ ;&0
<g<p——
-2 -2

avec ¢ = 1/B etd = 1/a. La complétude de g en restriction aux feuilles de Fy découle
de celle de la métrique H‘% sur G*\ {0}.
La derniére assertion du lemme vient de ce que les feuilles radiales de Fy sont

o

topologiquement des cylindres et que toutes les métriques plates completes sur de telles
surfaces sont isométriques a des cylindres euclidiens bi-infinis. UJ

4.3. Définition du champ réel. — Introduisons la fonction £ : G* \ {0} — R définie
par f(p) := —log||p||>. Son gradient le long des feuilles de Fy, vis-a-vis de la métrique
hermitienne g, est un champ de vecteurs W sur G \ {0}. Pour tout scalaire non nul A €
C*,onaf(A-)=—log|A|*+£(-), ce qui montre que dzrf est invariante par multiplication
par les scalaires et, par conséquent, qu’il en est de méme pour W. Il existe donc un champ
de vecteurs analytique W sur P? tel que, pour tout p € CG* \ {0}, on a D/,H(W(]))) =
W([p]) : ce champ est appelé le champ réel.

Lemme 4.3. — Ona W =R(FV), oi p(p) = —2@”':“2? pour tout p € G\ {0}.

Démonstration. — Introduisons la métrique hermitienne g sur TFy telle que
21 (V) = 1. Autrement dit, si Pon paramétre la feuille passant par le point gy de G\ {0}
par la courbe intégrale ¢ > p(#) de I'équation = V(p) passant par p(0) = py, alors la mé-
trique g est la métrique hermitienne standard |d¢|>. Comme g(V) = h avec h=|| - ||**~*
(voir (4.2)), on en déduit g = Ag| puis la formule

(4.3) W=V =h"'V,f.
Or dans la coordonnée ¢ décrite plus haut, on a

R((p- V(p)dD)

dxlog pll” =2
7ogllp TE

b

ce qui montre que

= -a(2V0L)

Le lemme découle de (4.3). H
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Corollaire 4.4. — Le champ W s’annule sur Uunion de Uensemble singulier S de F et du lieu
défimi par

(4.4) B:=TI({R-V=0}).

De plus, st d # 1, alors B est non vide.

Démonstration. — D’apres le lemme 4.3, {R - V =0} U TT7'(S) est le lieu ou W est
tangent a la distribution radiale complexe. Si B est vide, alors W ne s’annule pas dans
la partie réguliere de TF. On en déduit que TF =~ O(1 — d) est trivial en restriction a
P?\ S, donc d = 1. 0

Remarque 4.5. — Sauf pour certains champs de vecteurs non génériques (e.g V =
x0, + 290, + 320;), on montre que B est également non vide dans le cas 4 = 1. Nous
verrons par ailleurs que pour les feuilletages satisfaisant les propriétés Py et Ps, alors B
est homologue a 1 —d fois la classe d’une droite. Notons enfin que B est une courbe mixte
de bidegré (1, d) (voir [22] pour I’étude générale des courbes mixtes).

4.4. Les singularités de W le long des fewlles et la propriété Pg. — Le résultat suivant
donne des informations sur la nature des singularités du champ W le long des feuilles,
c’est-a-dire en chaque point de 'ensemble B défini par (4.4). On rappelle qu’une singu-
larité d’un champ de vecteurs sur une variété est une source si toutes les valeurs propres
complexes du champ en cette singularité ont une partie réelle strictement positive, une
selle si les parties réelles des valeurs propres sont non nulles et certaines de signes opposés,
et un puits si toutes les valeurs propres sont de parties réelles strictement négatives.

Lemme 4.6. — En restriction a une fewille de F, une singularité p de W

— estun puits ssi |V||> > |DV(V) - R| sur TI7'(p) ;
— est une selle sst || V]|* < |IDV(V) - R| sur TI7'(p) ;
— west jamais une source.

Dans ce lemme, on rappelle que /- §/ = xx' + )/ + 27 est le produit hermitien
standard sur G, R = x% + y% + z% le champ radial, D la connexion standard sur TC?.

Observons alors que si I'on note V=73, Vk%, DV(V) est le champ de vecteurs

%2}
défini par
iAY
DV(V),= ) v,a—l’“ pour £ € {x,, z}.
le{x,,2}
Démonstration. — Fitant donné une fonction lisse ¢ : C — R, on rappelle qu’un

point critique { est
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— dégénéré ssi dtdt| = |22 aﬂ £l en fy;

%9
8;3[ <~ | 8[2

— d’indice 1 ssi |22 |<|312|ent0,

— d’indice 2 ssi £l en ty;

3/8[

b
— d’indice 0 ssi 2% Mt > |22 o7 2] en 4.

Dans le cas non dégénéré, le gradient de ¢ (vis-a-vis d’'une métrique conforme quel-
conque) est un puits dans le premier cas, une selle dans le deuxiéme et une source dans
le troisieme.

On applique alors ceci a la fonction f = —log || - || en restriction a la feuille F(p)
de Fy passant par un relevé de p. En effet, le champ W est le gradient de la restriction
de /" a Fy. Un calcul facile donne

°f  DV(V)-R (V-R)’ . 3 IVI* | IR-VJ?
_ = — (& - = — .
e IR]? IR]* dtdt IR[* IR

Puisque (R - V)(p) = 0, on en déduit que la singularité p est

— un puits ssi |[V[|? > [DV(V) - R| en p;
— une selle ssi [|[V]|? < [IDV(V) - R| en p;
— n’est jamais une source. U

Définition 4.7 (Propriété Py). — Un fewilletage du plan projectsf complexe vérifie la propriété Py
si le champ V ne s’annule pas sur G\ {0} et si les singularités du champ W le long des feuilles de F
sont des puats.

Lemme 4.8. — Supposons que F vérifie la propriété Py. St B est non vide, alors B est une section
transverse a F qui admet un voisinage tubulaire Uy lel que, d’une part le feuilletage en restriction a Uy
est un fibré lisse localement trivial en disques et, d’ utre part, 1l existe un difféomorphisme Uy \ B —
R=" x Uy tel que le champ W est égal au c/zamp dans les coordonnées (t, q) € R=* x 9Up.

Démonstration. — Sur C* \ {0}, les points critiques de la fonction f = —log]||.|| en
restriction a chaque feuille de Fy sont non dégénérés : IT~!(B) étant le lieu des points ot
la différentielle de f le long des feuilles de JFv est nulle, il s’agit d’une section transverse
du feuilletage Fy. En effet, application C° \ {0} — TRF," qui a un point associe la
restriction de la différentielle de £ au fibré tangent TR Fy (dans une trivialisation locale de
TRF,") est un difféomorphisme local le long des feuilles au voisinage d’un point critique
de f le long de Fy si et seulement si le point critique est non dégénéré le long de sa feuille.
La projection B de IT™!(B) dans P? est donc également une section transverse de F.

On construit Uy en considérant Papplication expz : (TRF)p — P? qui asso-
cle a un vecteur v € Tf]: Pextrémité exp r(v) := y (1) de la géodésique y : [0, 1] —
(F(b),g) partant de y(0) = b dans la direction ”Z—’;(O) = v. On déduit du théoréeme
des fonctions implicites que si & > 0 est suffisamment petit, la restriction de expr a
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{ve (TR./T)‘B | lv]l < €} est un difféomorphisme sur son image. De plus, par hypo-
theése, les valeurs propres de W en restriction a TRF sont toutes les deux strictement
négatives en tout point b € B, donc par compacité de B, si I'on choisit € > 0 suffisam-
ment petit, toute trajectoire de W partant d’un point de Uy \ B converge vers un point
de B dans le futur et intersecte 0Ug en un unique point. En choisissant un tel € > 0, on
conclut la démonstration du lemme en associant a un point r de Uy \ B 'unique couple
(¢, 9) € R=" x 9Ug o ¢ est I'intersection de la trajectoire de W passant par r avec dUjy et
ou ¢ est 'unique réel positif tel que Py, (¢) = 7. U

4.5. Etude de W au voisinage dune singularité de F et propriété Ps.

Lemme 4.9. — En une singularité de F en laquelle V ne s’annule pas, le champ de vecteurs W
est égal a la partie réelle d’un champ de vecteurs holomorphe Y définissant F a Uordre un, ¢’est-a-dire que

(4.5) W =N(Y) + termes d’ordre supérieur a 2.

Démonstration. — Soit s € P* une singularité de F. Quitte & permuter les coordon-
nées, on peut supposer que s appartient a la carte affine {z # 0}, isomorphe a C* via
I'isomorphisme (x, 9, 2) I—> (u =x/z,v=y/2). Le feuilletage F est défini par le champ de
vecteurs X = X -+ X

Uav)
0 0
(4.6) X =(V.(u,v,1) —uV (u v, 1))— + (V,(u, v, 1) — vV, (u, v, 1))8—
v
Dans les coordonnées (u, v), on a également W = gR(W -+ W, ), ou

W, (1, ) = W, (&, v, 1) —uW.(, v, 1),
W, (1, v) = W, (1, v, 1) — vW.(1, v, 1)

et ou les fonctions W, pour & € {x, , z} sont définies par I’équation

W=9%RW,— 9 +W,— 9 + W, — 9
I R T T I I

Or le lemme 4.3 nous donne Iexpression W, = PV, ou p(p) = ZJII;\/I%’)) En vertu de
(4.6), on en déduit 'expression W = R(pX) ot p(u, v) = p(u, v, 1) et le résultat en dé-
coule en posant Y = p(5)X puisque par hypothese p(s) # 0. 0J

Nous adopterons la définition suivante : une singularité s de F est hyperbolique si
les valeurs propres d’un champ définissant F au voisinage de s ne sont pas R-colinéaires.

Définition 4.10 (Propriété ‘Ps). — Un_feuilletage F du plan projectif complexe vérifie la pro-
priété Ps si NV ne s’annule pas sur G\ {0} et si chaque singularité de JF est d’une part hyperbolique et
d’autre part une source pour le champ W.
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St les valeurs propres d’un champ de vecteurs holomorphe Y en une singularité s
sont A et u, alors celles de sa partie réelle W = 0(Y) sont A/2, /2, A/2, /2. Ainsi, s
est une source pour le champ W si et seulement s1 91(A) et R(w) sont strictement positifs.

Lemme 4.11. — Soit F un_fewilletage du plan projectif qui vérifie la propriété Ps. Alors pour
tout s € S, 1l existe un voisinage U, de s a bord lisse et un difféomorphisme U, \ {s} — R=" x 9U;
qui envote le champ W sur le champ horizontal % dans les coordonnées (¢, Q) € R=" x 9U,.

Le feuilletage F est transverse a dU ; son intersection avec OU; définit donc un fewlletage trans-
versalement holomorphe Fyu. par courbes réelles de 9U,. Ce dernier admet deux fewlles circulaires et,
dans leur complémentarre, 1l est difféomorphe a un produit de la courbe elliptique E; = G/ (ZA + Z )
par un intervalle.

De plus, il existe un fewlletage lisse par surfaces R sur 9U, qui est transverse a Fyu,, et qui est
homéomorphe au_feulletage de Reeb de la sphére dans chaque composante de dUs.

Démonstration. — Soit Y le champ construit au lemme 4.9. Le théoreme de linéari-
sation de Poincaré montre qu’il existe des coordonnées (u, v) centrées en s telles que

Y 0 0
~ M Ty
ou A et u sont les valeurs propres de Y. D’apres ’hypothese Ps, ces derniéres étant de
partie réelle strictement positive, il existe r > 0 tel que en notant 4= |u|* + |v|?, on a
dh(W(g)) > 0 pour tout ¢ # s dans la boule U, := {|u|* + |v|* < *}. En particulier, toute
trajectoire du flot induit par W issue d’un point ¢ € U; \ {5} tend vers s lorsque le temps
tend vers —oo, et aboutit a un point QQ(¢) de dU; en un temps #(¢) > 0. L’application
g€ U\ {5} = 1—1(¢9), Q(g)[€ R=" x dU; est un difféomorphisme qui envoie le champ
W sur le champ %
Les deux feuilles circulaires sont les intersections des séparatrices {z = 0} et {v = 0}
avec la sphere dU,. En dehors de ces derniéres, on a une intégrale premiére

1
4.7) — (A logv — nlogu)
2w

a valeurs dans E dont les fibres intersectent dU; sur des intervalles. C’est cette intégrale
premiére qui confére a la restriction de Fjyy, la structure de fibré au-dessus de E par
intervalles.

Construisons a présent le feuilletage R. Considérons la fonction p égale & p = |ul?
sur 0U,. Les niveaux p = 0 et p = 7> sont les deux feuilles circulaires. Par contre, tous
les autres niveaux p~' (o) pour py € ]0, 7’[ sont des sections transverses toriques a Fyy,.
Nous allons définir le feuilletage R via p sur p~'([e, ) pour ¢ > 0 suffisamment
petit et modifier ce fibré dans les deux tores pleins p~' ([0, €]) et p~'([#* — &, 7*]) par la
méthode du tourbillonnement de Reeb.

Expliquons cette construction dans le tore plein T = p~'([0, £]), dans Pautre tore
la construction étant similaire. Orientons Fjy, en le voyant comme le bord du feuilletage



204 AURELIEN ALVAREZ, BERTRAND DEROIN

par surfaces de Riemann F sur la boule U,. Le long des feuilles de Fy, ainsi orientées, la
fonction p est croissante si S(%) > () et décroissante si S(%) < 0. Introduisons le fibré en
disques 0 : T — R/2nZ définie par 6 (u, v) = Arg(v), fonction croissante sur les feuilles
de Fyu,. Etant donné une fonction lisse 9 : [0, 2] — R’ qui vaut 1 sur un voisinage de
lorigine et qui s’annule sur [¢, ], le feuilletage défini par

A
Y (p)do — Im(;>(1 —(p))dp =0

est alors transverse au flot et coincide avec le fibré donné par p sur un voisinage de

o (e). O

5. Construction d’un ensemble errant

Le but de cette partie est d’établir 'existence d’un ensemble errant ([13] et sec-
tion 7) pour les feuilletages vérifiant la propriété Pg.

Théoreme 5.1. — Supposons que F vérifie la propriété Py. Alors le saturé de B par F est un
ouvert D C P? sur lequel le feuilletage est une fibration sur B ayant une structure de fibré lisse localement
trivial en disques.

Démonstration. — En tant que section transverse au feuilletage ', on rappelle que
la surface B hérite d’une structure holomorphe ([3]). Soit Atty(B) 'ensemble d’attrac-
tion de B, c’est-a-dire I’ensemble des points ¢ € P? tels que @i (¢) tend vers un point
de B lorsque ¢ tend vers 400 il s’agit d’un ensemble invariant par ®yy, contenant le voi-
sinage tubulaire Uy de B construit au lemme 4.8, et chaque trajectoire de @y contenue
dans Attw(B) \ B intersecte dUp en un unique point. Ainsi, Atty(B) est un fibré lisse
localement trivial en disques au-dessus de B dont les fibres sont les ensembles d’attraction

Atty (h) = {q €P*| lim @l(g) = b} pour b € B,

et la projection Atty (B) — B est holomorphe.

Remarquons que pour tout b € B, Attw(b) est contenu dans la feuille F(5) du
feuilletage F passant par b. Nous allons en fait voir que Attw(b) = F(b) ce qui permettra
de conclure la démonstration du théoréme.

_ Lemme 5.2. — La croissance de la fonction f = —log]|| - |? le long d’une portion de trajectoire
de W contenue dans T (P \ Int(Ug)) est linéaire avec une constante uniforme. En d’autres termes,
il existe un réel a > 0 tel que pour tout p € TI7'(P? \ Int(Ug)) et tout t > 0 tel que CDiN(p) €

IT-1(P? \ Int(Ug)) pour tout s € [0, 1],
S(@5®) = at+1 ().
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Démonstration. — Si p € TT7'(P? \ Int(Uy)), alors toute la trajectoire {@5 (P)}i<o est
contenue dans IT7'(P? \ Int(Ug)). Or, comme V ne s’annule pas sur G*, le champ W
ne s’annule pas dans I1T~'(P? \ Int(Ug)) (on observera que, méme si W s’annule en
chaque singularité de F, le champ W ne s’annule pas sur I1-'(S)). Ainsi, la quantité
af (W) = ||V~V||§ est strictement positive en tout point de TT7'(P? \ Int(Up)). Cette der-
niére étant invariante par multiplication par les scalaires et P? \ Int(Ug) étant compact,
elle est minorée par une constante @ > 0 sur IT7'(P? \ Int(Ug)). Le lemme en résulte
immeédiatement. O

Soit b € B et p € C*\ {0} tel que T1(p) = b. La restriction de IT a la feuille F(p)
de Fy passant par p est un revétement abélien IT, : Fy(p) — F(b) et la restriction
au domaine d’attraction Attg(p) = {f' | Iim, 4 CD%,(p’ ) = p} est un difféomorphisme
Attyy (p) — Attw (). Or le lemme 5.2 montre que la restriction de / a Atty (p) est propre,
ce qui établit que Fy(p) = Atty (p), et par conséquent

Fb) = TL,(Fv(p)) = T, (Attg () = Attry (b). O

6. Hyperbolicité de W : partie I

Nous nous donnons un feuilletage algébrique F de P? qui satisfait les propriétés Pg

et 735.

6.1. Hyperbolicité longitudinale. — On considere dans ce paragraphe le fibré en
droites réelles au-dessus de P? défini par

(6.1) NzW :=TRF/RW.

Comme le flot ®yy associé a W laisse invariantes les distributions TRF et RW, il se re-
leve naturellement en un flot agissant sur NxW via sa différentielle. La métrique her-
mitienne g sur TF que lon a définie au paragraphe 4.2 induit une métrique g sur
TRF ~ TF dans la partie réguliére de F et une métrique gy, 7 sur NxW définie par

6.2) gw.7([v]) = [vol,(v, W)|

pour tout ¢ € P? et tout [v] € NW. Dans cette formule, vol, désigne la forme volume
sur TR F induite par la métrique hermitienne g.

Lemme 6.1, — La métrique gw 5 sur NzW est strictement contractée par le flot D@y, ¢’est-
a-dire que pour tout q € P2, tout vecteur non nul [v] € (NzW) g el tout réel t >0 on a

g\v,F([Dq)iv(v)]) < g‘"’f([v])'
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Démonstration. — On a pour tout ¢ € P2 et tout couple de vecteurs v, w € T;{]:

% vol, (D@}, (v), DPyy (w)) = div(W)(g) vol,(v, w),

(=0

ou div(W) désigne la divergence de W le long des feuilles vis-a-vis de la métrique g.
En posant w = W(g), et en remarquant que D®{,(W(g)) = W(P{,(g)), on s’aper-
coit que le résultat est équivalent a montrer que dlv(W) <0.Or st ¢g=|[pl, on a
div(W)(¢g) = le(W) (p) et le champ W est le gradient de la fonction p > —log||p]|?
qui est strictement pluri-sur-harmonique en dehors des directions radiales de V, ce qui
conclut la démonstration du lemme. 0

6.2. Calcul de la connexion de Bott de F et hyperbolicité transverse. — Le fibré normal
NJF a F est un fibré en droites holomorphe au-dessus de P* qui, dans la partie réguliére
de F, s’identifie au quotient NF = TP?/m(TF) ([5]). Ce fibré est muni d’une connexion
feuilletée, c’est-a-dire d’une connexion définie uniquement dans la direction du feuille-
tage ([9, section 2.1]), appelée la connexion de Bott et notée Vg,,. Dans la partie réguliere
ou le feuilletage est défini par T = ¢st dans des coordonnées feuilletées (z, ), la connexion
de Bott s’exprime par

6.3 \% 0 =d 0
> ol [oz]) oo 7]

pour toute fonction holomorphe «.

D’un autre coté, le champ V induit une connexion feuilletée Vy sur le fibré tau-
tologique O(—1) dont les sections plates en restriction a chaque feuille sont les courbes
intégrales du champ V. Cette connexion induit une connexion V& le long des feuilles sur
toutes les puissances O (k) du fibré tautologique.

Lemme 6.2. — Si'V est de divergence nulle, 1l existe un isomorphisme entre NF et O(d + 2)
qui envote la connexion de Bott Vg, sur la connexion fo’?.

Démonstration. — D’apres le théoreme d’extension d’Hartogs, il suffit de démontrer
le lemme sur P?\ S. Soit G le feuilletage de C* \ TT7!(S) dont la distribution tangente est
TG=CR @ CV,

ou R désigne le champ radial. En d’autres termes, G = IT*F. Si NG désigne le fibré
normal & G, on a donc IT*NF = NG. Pour p € C* \ [17!(S), la forme linéaire sur C*

@, (-) = det(R(p), V(p), )

a pour noyau T,G et définit donc une forme linéaire non nulle sur N,G. Ces formes
linéaires vérifient

@A) = det(R(Ap), V(Ap), hu) = 1, (),
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pour tous A € C*, p€ G\ IT7'(S) et u € N,G. On construit ainsi une application
O(—-1) - NG*

(6.4) JAS] O(—l)[p] =@, € Npg* o~ N[p]./_"*

qui est (d + 2)-homogéne et qui induit un isomorphisme entre O(d + 2) et NF.

Dans ce qui suit on montre que la connexion de Bott sur NF est envoyée sur
la connexion Vi sur O(d + 2) par cet isomorphisme. Rappelons que ces connexions
sont définies dans la direction des feuilles uniquement. Pour calculer la connexion de
Bott, observons que le flot local @y associé au champ de vecteurs V préserve G et, par
conséquent, si [v] € N,G, alors la section de NG le long de la feuille Fy (p) passant par p
définie par

(6.5) t€(C,0) > v(t) = [DP},(v)] € Ny G

est plate. Dans cette formule, on parameétre le germe de feuille (Fy(p), p) par le germe
de surface de Riemann (G, 0) via ¢ p(t) = P, (p). Or DO (V) =V et, puisque V est
homogene, il existe une fonction B telle que D®{,(R) =R + V. On a alors

95 (v) = det(DDL (R (p(1)), DD (V(p(1))), DL, ()

et, puisque V est de divergence nulle, on en déduit la relation

@0 () = det(R(p), V(p), v) = ¢, (v).

Cleci exprime exactement que la connexion induite par le champ V sur O(—(d + 2)) est
envoyée sur la connexion de Bott sur NJF™ par I'application (6.4). 0J

Dans la partie réguliere de JF, définissons le fibré normal réel
NRF :=TRP? /TR F.

L’isomorphisme TP? >~ TRP? induit un isomorphisme NF p2\s > NRF qui échange les
connexions de Bott sur ces deux fibrés. Il fournit également une structure de fibré lisse en
droites complexes sur NRF.

Corollaire 6.3, — Il existe une métrique hermitienne g sur le fibré normal NRF qui, en dehors
de BUS, est strictement dilatée par le flot induit par W. Plus précisément, st Uy désigne le voisinage
de B construit dans la démonstration du théoreme 5.1, il existe une constante b > 0 telle que, pour tout
T1(p) € P2 et tout réel t > 0 tels que la trajectoire CD%%’” (T1(p)) est contenue dans P> \ Int(Ug), on a
pour tout [v] € N%(p)}—,

(6.6) ax([DPY()]) = expbngx([v]).
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Démonstration. — On définit la métrique gy comme étant 'image de la métrique
sur O(d + 2) induite par la métrique hermitienne standard sur G* par la composi-
tion de Iisomorphisme O(d + 2) — NJF défini par (6.4) et de I'isomorphisme naturel
(NF)jprs — NRF. Les sections plates de la connexion induite par V sur O(—1) le long
des courbes intégrales de W sont les courbes intégrales de W. Or le lemme 5.2 montre
que

6.7) |25 < exp(—anlipll®.

Le corollaire s’ensuit en vertu du lemme 6.2. O

7. La décomposition de Fatou/Julia

Dans [13], Ghys, Gomez-Mont et Saludes associent a un feuilletage F de P* ayant
des singularités hyperboliques une partition de P* en un ensemble de Fatou Fggs(F) et
un ensemble de Julia Jogs(F). Ils donnent également une classification des composantes
de Fgas(F) en trois familles, I'une d’elles correspondant aux composantes errantes. Un
point de vue alternatif a ensuite été¢ développé par Asuke [2] qui associe une décomposi-
tion Fatou/Julia & un pseudo-groupe I' de transformations holomorphes agissant sur une
surface de Riemann T ayant la propriété de génération compacte.

Rappelons que la propriété de génération compacte, introduite par Haefliger [14],
stipule qu’il existe un ouvert relativement compact T C T qui intersecte toutes les or-
bites de I" et que, de plus, la restriction I'j;r de I' @ T” est engendrée par un nombre
fini d’éléments y; € I'v, chacun se prolongeant en un élément 3; € I' dont le domaine
de définition dans T contient 'adhérence du domaine de définition de y; dans T'. Le
pseudo-groupe I = I' /v est appelé une réduction de I'. Il est toujours possible de trou-
ver une réduction telle que T” soit biholomorphe a une réunion finie de disques dans C,
ce que nous ferons par la suite.

Un ouvert U C T” est un ouvert de Fatou si tout germe de I'"" en un point de U
se prolonge en un élément de I'" défini sur U. I’ensemble de Fatou est lorbite par I' de
'union des ouverts de Fatou contenu dans une réduction I' de I et il est indépendant
de la réduction choisie. I’ensemble de Julia est son complémentaire. On remarque que
I’hypothese de normalité dans la définition de 'ensemble de Fatou est ici automatique
d’apres le lemme de Schwarz car on a supposé que T” est une réunion finie de disques
dans C ([2, Remark 2.8]).

Le pseudo-groupe d’holonomie d’un feuilletage holomorphe sur une surface com-
plexe compacte, dont les singularités sont hyperboliques, est de génération compacte
([13]). L’ensemble de Fatou Fa(F) d’un tel feuilletage F au sens d’Asuke est I'union
des feuilles correspondant aux points de 'ensemble de Fatou du pseudo-groupe d’holo-
nomie du feuilletage dans sa partie réguliére; ensemble de Julia Jo(F) de F au sens
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d’Asuke est son complémentaire. Notons que, d’apres [2, Proposition 4.2], nous avons
Foos(F) CFA(F).

Il nous sera utile dans ce qui suit de connaitre le critére suivant pour qu’un point
appartienne a I’ensemble de Julia au sens d’Asuke d’un feuilletage holomorphe F sur
une surface complexe compacte avec des singularités hyperboliques : étant donné une
métrique hermitienne sur le fibré normal au feuilletage et un compact contenu dans la
partie réguliere, regardons ’ensemble des applications d’holonomie d’un germe de trans-
versale en notre point vers une transversale en un point de ce compact. Si les dérivées de
ces applications d’holonomie en notre point forment un ensemble non borné, alors notre
point appartient a I’ensemble de Julia.

Proposition 7.1. — Soit F un_feuilletage holomorphe sur P* satisfaisant les propriétés Py
et Ps. Alors les ensembles de Fatou ¥ qi5(F) et ¥4(F) sont tous les deux égaux au domaine errant D
construit au théoréme 5.1.

Démonstration. — Comme D C Fgs(F) C Fo(F), il suffit donc de montrer que le
complémentaire de D est contenu dans Jx(F). Soit p € P? \ D. Si ce point est singulier,
il appartient a Jges(F) et a Ja(F) par définition. Sl est régulier, son orbite positive
{D{(P)}i=0 par le flot induit par le champ W ne peut s’approcher ni de B (car sinon p
appartiendrait au domaine errant), ni de S (car ces dernieres sont des sources pour W).
Ainsi, d’apres le corollaire 6.3, le logarithme de la dérivée de I’holonomie du feuilletage F
en p le long du chemin {®{y(p)}o<;<r croit linéairement et on en déduit la propriété
suivante : ’ensemble des dérivées en p des applications appartenant au pseudo-groupe
d’holonomie de la restriction du feuilletage au complémentaire d’un certain voisinage de
I'ensemble singulier de F est non borné. Ainsi p appartient a Ja(F). O

Dans la suite, pour un feuilletage F de P? satisfaisant les propriétés Py et Ps, nous
noterons F(F) et J(F) ses ensembles de Fatou et de Julia qui donnent une décomposition
non triviale de P? dés que d > 2 (F(F) # @ d’aprés le corollaire 4.4 et J(F) contient au
moins 'adhérence des séparatrices).

8. Hyperbolicité de W : partie II

Dans cette partie, nous poursuivons I’étude d’un feuilletage algébrique complexe F
de P? satisfaisant les propriétés Py et Ps; en particulier, nous construisons les feuilletages
stables et instables, faibles et forts, du champ W dans le complémentaire P? de I’'ensemble
B U S. Nous introduisons aussi 'ensemble hyperbolique K dont 'ensemble d’attraction
est 'ensemble de Julia privé de S.
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8.1. Une métrique riemannienne sur P> adaptée @ W. — Soit Uy le voisinage de B
construit au lemme 4.8. A partir d’'une métrique riemannienne /4y, sur dUg, nous
construisons une métrique riemannienne /z sur Ug \ B en posant

(8.1) h=di* 4 ¢ hyuy o F + g%h;—UB,TR}—’

. Lot L
ou les métriques Ay, TR F et haUB‘TR}'

TRF N TIUg, et vérifient hyy, = hyu, tRF + IZGLL'B,TR - Dans Iéquation (8.1) la coordon-
née ¢ a été définie au lemme 4.8 et prend ses valeurs dans [0, +-00[.

Soit Ug le voisinage de S construit au lemme 4.11. On définit une métrique £
dans Us \ S en partant d’une métrique lisse %y, sur dUg pour laquelle TRFNTIUg est

orthogonal au feuilletage R (lemme 4.11) et on pose

ont respectivement pour noyau (TR F N'TIU)"* et

(8.2) h=di* + ¢ hyug 1= F + thh;_US,TR}"

ou les métriques fyu, TR £ €t /szs 1Rz ONL Tespectivement pour noyau (TREFNTIUg)* =

TR et TRF N TAUs, et vérifient hyy, = hyus mRF + h;_US,TR]-" Dans I’équation (8.2) la
coordonnée ¢ a été définie au lemme 4.11 et prend ses valeurs dans ]—o0, 0].

Pour terminer, nous étendons la métrique # en une métrique riemannienne lisse
sur P2 de facon arbitraire et nous notons hy, r et hy les métriques induites par % sur les

fibrés NxW et N respectivement.
Lemme 8.1. — On a

sup ||D<I>{N(p) Hh < +o00.

peP2, te[—1,1]
D’autre part, il existe des constantes a, b, ¢, d > 0 telles que, pour tout t € R et pour tout v € NxW,
8.3) cexp(—at)ny 7 (v) < Iy 7 (DB (1)) < dexp(—bD)y F(v),
et, pour tout w € N%.,

(8.4) cexp(bt)hr(w) < hN(DCD{V(w)) < dexp(at)hr(w).

Démonstration. — La proposition est satisfaite pour une trajectoire qui reste dans
I'un des voisinages Ug \ B ou Ug \ S (avec constantes ¢ =d = 1 et a = b = 2 par construc-
tion de la métrique £). Elle est également satisfaite pour une trajectoire restant dans le
compact P? \ (Uy U Us), d’aprés le lemme 6.1 et le corollaire 6.3. Comme le long d’une
trajectoire quelconque, il ne peut y avoir que deux transitions entre ces deux régimes, le
résultat en découle. O

8.2. Un lemme classique. — Le résultat suivant est bien connu mais, n’ayant pas
trouvé ’énoncé sous cette forme dans la littérature, nous le redémontrons.
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Lemme 8.2. — Soit & — X un fibré vectoriel réel de dimension finie au-dessus d’un espace
topologique X, muni

— d’un flot continu d’automorphismes U= {\il,} ier nduisant un flot W = {\W,},cr agissant
sur X,
— et d’une métrique continue et définie positive | - |.

Supposons qu’il existe un sous-fibré continu \V -invariant £, C E et écrivons

CO 2T
(8.9) v, = ( 0 3x)
relativement a la décomposition E = E. @ E*X. Enfin, supposons que

(8.6) sup ()| < +oo,

peX, te[—1,1]

et qu’il exste des constantes a, ¢ > O telles que, pour tout p € X et tout t € R, on ait

(8.7) lae) ™| <cet|8.(p)| < cexp(—at),
pour la norme d’opérateur associée a | - |. Alors, Uensemble ¥ _formé des éléments | € & tels que
(8.8) Jdim [0 =0

est un sous-fibré vectoriel continu de E tel que

— E=E®F e langle entre ¥. et ¥ est unaformément minoré,
— F est V-invariant,
— et la quantité sup o | (W, (p))p || tend vers O exponentiellement vite lorsque ¢ tend vers +00.

Démonstration. — Compte-tenu de (8.6), il suffit de démontrer le lemme pour des ¢
entiers, ce que nous allons donc faire. Choisissons / € F au-dessus d’un point p, de X et,
pour tout ¢ € R, notons p, = W,(py), f; = \fl,(f), et décomposons f; = ¢, + etL avec ¢ € E et
¢ € EX. On a alors

8.9) b = —at(ﬁo)_l%(ﬁo)eé + at(ﬁo)_let-

Le second membre du terme de droite tend vers 0 lorsque ¢ tend vers 4-00. Etudions plus
en détail le premier membre. En posant

(8.10) u(po) = ct;(po) ' yi(po) € Hom(EjO, EPO),
la relation de cocycle \il,(pj) = \ifH (ps41) © \fll (ps) nous donne

(8.11) w(po) = uy (po) + al(pO)_lul(pl)Sl(pO) + -+ affl(po)_lul(ptfl)affl(/70)-
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En utilisant (8.6) et (8.7), on obtient que le terme de droite de cette expression est la
somme partielle d’'une série normalement convergente, ce qui montre que () admet
une limite ux(po) lorsque ¢ tend vers 400, qui dépend continiiment de py et dont la
norme est bornée uniformément. Comme d’apres (8.9), on a ¢y = —ut(po)e& +a,(po) e,
on obtient I’expression

(8.12) € = —uoo(po)eol.

Réciproquement, supposons que f = ¢y + ¢7, ol ¢ et ¢ sont des éléments de E et E*
respectivement, qui vérifient (8.12). On a alors en manipulant (8.9)

(8.13) e =a,(po) (60 + az([’o)_lyz(Po)eol) = a(po) (uz(ﬁo) — Uoo(ﬁo))eol-

Or

(8.14) a,(po) (uoo(pO) - ”t(ﬁo)) = (Z ak(ﬁt)lul(pt+k)5k(/9t))3t([70),
=0

donc d’apres (8.13) et (8.14), on obtient
1
ledll < ¢ exp(=an) | ¢ |
pour une constante ¢’ indépendante de py, ¢ ou encore /. On a aussi

’

et = [3.et] < cop—an]et

ce qui montre bien que f = ¢, + ¢ converge vers 0 (et de plus exponentiellement vite).
On a donc bien montré que F est le graphe du morphisme continu de sous-fibrés de €

L _pl L
¢ € Ep = —Us(P)e € Ey,
ce qui acheve la démonstration du lemme puisque uo, est bornée. UJ

8.3. Les distributions stables et instables du flot W.
Proposition 8.3. — 1l existe une décomposition D Py -invariante et continue
(8.15) TRP? =TF, ®RW @ TF;"

ou TR}—‘P;Z =TFy ®RW. Les angles entre les facteurs de la décomposition (8.15) sont uniformément
munorés pour la métrique h. De plus, il existe des constantes a, b, ¢, d > O telles que, pour tout t € R et
pour tout v € TFy, ™,

(8.16) cexp(—a)h(v) < (DL (v)) < d exp(—bi)h(v),
et, pour tout w € TG,

(8.17) cexp(bt)h(w) < h(DPY(w)) < dexp(at)h(w).
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Démonstration. — On applique (8.3) ainsi que le lemme 8.2 au fibré £ = TRF, au
flot ¥ := D®yy et au sous-fibré E = RW. On obtient 'existence d’un sous-fibré continu
TFy~ CTRF de dimension réelle 1, qui est uniformément exponentiellement contracté
par le flot D®yy.

On applique maintenant (8.4) ainsi que le lemme 8.2 au fibré & = TRP?, au flot o
défini par 0, = D®; pour tout ¢ € R et au sous-fibré E = TRF, pour obtenir Pexistence
d’un sous-fibré continu TFy " C TRP? de dimension réelle 2, transverse a TRF, qui est
uniformément exponentiellement contracté par le flot 0. UJ

Remarque 8.4. — Par construction de la métrique 4 au voisinage des singularités
de F, la distribution TFy~ est Pintersection TRF N TaUy en restriction a dUy. De
méme la distribution TF" est le fibré tangent du feuilletage de Reeb R en restriction
a Us.

8.4. Ensemble hyperboligue maximal. — Une excellente référence pour cette section
est [11]. Pour toute singularité s € S, on note Rép,, (s) le bassin de répulsion de s, a savoir
I’ensemble des points dont la trajectoire par le flot ®yy dans le passé converge vers s. Il
s’agit d’'un ouvert de P?, puisque chaque singularité de F est une source (propriété Ps).
On notera Rép,, (S) I'union des bassins de répulsion des singularités de JF.

Rappelons que I'ensemble errant D, I’ensemble de Fatou F(F) et 'ensemble d’at-
traction Atty (B) de B sont tous les trois égaux (théoreme 5.1 et proposition 7.1). Intro-
duisons I’ensemble

(8.18) K :=P?\ (Atty(B) URépy(S)).

Il s’agit d’un compact de P? qui est invariant par le flot ®v. On remarque que ’ensemble
de W-attraction de K défini par

8.19) Aty (K) := Ip eP*| lim d(®l().K) = o}

est 'ensemble de Julia de F privé des singularités et que 'ensemble de W-répulsion de K
défini par

(8.20) Répy, (K) i= {p P! | lim d(®i (), K) = o}

est le complémentaire dans P2 de ensemble de répulsion de S.

Proposition 8.5. — L'ensemble K est un compact hyperbolique vy -invariant maximal.

Démonstration. — Ceci découle de I'hyperbolicité de W sur P2 vis-a-vis de la mé-
trique / construite au paragraphe 8.1. La maximalité découle de ce que toute orbite qui
n’est pas dans K tend vers 'infini dans P? par définition méme de K. UJ
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Corollaire 8.6. — Les ensembles de W-attraction (resp. de W -répulsion) de K sont des unions
de variétés stables faibles (resp. instables faibles) de points de K.

Démonstration. — C’est une conséquence de la proposition 8.5 et de [11, Theo-
rem 5.3.25]. 0

Corollaire 8.7. — Lensemble des orbites périodiques de W est dénombrable.

Démonstration. — Comme K est hyperbolique, pour tout T > 0, les orbites pério-
diques de périodes bornées par T sont isolées. Par compacité de K, il n’y en a qu'un
nombre fini. 0J

8.5. Les fouilletages stables et instables de W. — Un feuilletage de classe G de di-
mension £ d’une variété M de classe C! est un feuilletage topologique de dimension £
de M dont les feuilles sont des sous-variétés immergées de classe C' de M qui dépendent
de facon continue du paramétre transverse dans la topologie C!. Plus précisément, un
tel feuilletage est la donnée d’un atlas de cartes continues {¢; : U; — Bf x B"*},c1, ou Bf
est la boule unité de dimension £, dont les changements de cartes préservent les hori-
zontales et tel que {(,01-_1 (-, T)}rep+ est une famille d’immersions de classe C!' qui dépend
continfiment de t dans la topologie C' sur les compacts. Un feuilletage de classe C!** de
dimension £ admet une distribution tangente qui est une distribution continue de rang k&
de TM : elle est définie sur chaque ouvert U; comme I'image de U; x R* par application

(pv v) = (p, D|w,([7)(p;l(v))
Proposition 8.8. — Il existe des uniques feuilletages Fvy~, Fyi, Fry > Fay sur P? de classe

C" ayant pour distributions tangentes

TFy , TFy=TFy +RW, TF", TF,=TF;" +RW.

La démonstration de cette proposition est ’'objet des sous-sections suivantes.

8.5.1. Un critere d’intégrabilité d’une distribution continue.

Lemme 8.9. — Soit (M, h) une variété riemannienne complete et D C TM une distribution
continue de rang k. On suppose donnée une_famille {F (p)},em de sous-variétés de classe C' de dimen-
sion k immergées dans M, tangentes a D, et telle que

— (unzcité) pour tout point p de M, p appartient a F (p) et le germe défini par (F (p), p) est
Punique germe de variété de classe C' tangente a D et de dimension k ;
— (complétude) la restriction de h a chaque F (p) est compléte.

Alors 1l existe un unique feuilletage de classe C'* dont la distribution tangente est égale @ D et ses_feuilles
sont les variétés F (p).
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Démonstration. — Nous dirons qu’une coordonnée (x,7) : U — Bf x B"* de
classe C! sur M est D-adaptée si, dans cette coordonnée, la distribution D est le graphe
d’une famille {D,},cpt«p+ d’applications linéaires D), : RY — R"* de normes d’opé-
rateurs inférieures a 1/3 pour les normes euclidiennes standard. Tout point admet un
voisinage sur lequel est définie une telle coordonnée.

Dans une coordonnée adaptée, considérons un point p situé dans la bi-boule B /3 X

B'f}f , ot B¥ C R* est la boule euclidienne de rayon r centrée en Porigine. Les propriétés
de complétude et d’unicité, ainsi que le choix du point p, montre que la composante de
F(p) NU est le graphe y = f,(x) d’une application f, : B* — B"™* de classe C'. En effet,
écrivons p = (xp, 99). Comme la coordonnée est adaptée, le germe F(p) en p est le graphe
d’un germe d’application f, : (B, x9) = (B"™*, 59) de classe C!. On notera r > 0 un rayon
tel que f, est défini sur la boule B(xp, ). Considérons un vecteur unitaire v € R’ et le
chemin y () = xo + tv; il existe un réel maximal 4, tel que ¥ ([0, 4, [C B et tel que le
germe f, s’étend sur un voisinage de B(xy, r) U y ([0, #,,[) en une application de classe C!
dont le graphe est contenu dans F(p). L'existence d’un tel réel maximal résulte de la
propriété d’unicité. Supposons par ’absurde que ¥ (4,,) appartient a Iintérieur de B,
Puisque F(p) est tangente a D et que les coordonnées sont adaptées, le prolongement
de f, 0y a [0, t,.[ est 1/3-lipschitzienne et admet donc une limite en 4, appartenant a
B"*. De plus, I'inégalité triangulaire montre que le graphe de f; est relativement compact
dans B¥ x B"*. Les métriques euclidiennes et /4 sont donc comparables a des constantes
multiplicatives pres le long du graphe de f,, ce qui implique que (y (?), f,(y () admet
une limite dans F(p) lorsque ¢ tend vers t,,,, a cause de la propriété de complétude. La
limite appartient a ouvert U et, en cette limite, le germe de variété F(p) est décrit par
le graphe d’un unique germe d’application de classe C'. On peut donc étendre f, sur un
voisinage de B(xy, r) U y ([0, #,,.]), contradiction. Ces extensions de /, le long des rayons
partant de xy dans B fournissent une extension de f, définie sur B* satisfaisant la propriété
souhaitée.

Etant constituée d’applications 1/3-lipschitziennes, la famille N peBl  xpit €St
équicontinue, donc relativement compacte dans la topologie uniforme sur les compacts.
Les graphes de ces applications de classe C! étant tangents a la distribution D, la famille
) pet  xpi 7t esten fait relativement compacte dans la topologie C' sur les compacts. On
déduit alors de la propriété dunicité que I'application qui a p associe f, est continue pour
la topologie C' sur f,.

Les coordonnées feuilletées du feuilletage sont définies par p — (x(p), f,(0)) : il
s’agit d’homéomorphismes locaux d’inverses donnés par (x,») = (x, fo,, (x)) : le feuille-
tage est donc bien de classe G0, 0J

8.5.2. Construction du_fewilletage instable fort. — Nous allons appliquer le lemme 8.9
a la distribution stable forte TF,"; il suffit donc de définir une famille de sous-variétés
immergées Fy, ' (p) tangentes & T " pour p € P2 et vérifier qu’elle satisfait les proprié-
tés de complétude et d’unicité. Nous allons le faire dans 'ensemble de répulsion de S
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puis dans ’ensemble de répulsion de K séparément (rappelons que ces deux ensembles
forment une partition de P2).

Par construction (section 8.1), la distribution instable forte TF" de W est tan-
gente a dUg et s’integre sur cette hypersurface en le feuilletage ‘R construit au lemme
4.11. Pour tout point p appartenant a ’ensemble de répulsion de S, il existe un réel ¢
et un point ¢ dans dUs tels que p = Pi;(¢); on pose alors Fii™ (p) := P (R(g)). La
variété immergée Fy " (p) est donc une feuille du feuilletage (®%,),R de Phypersurface
®:,(0Us) qui est compacte; la propriété de complétude du lemme 8.9 est donc satis-
faite. Dans I’ensemble de répulsion de S, la distribution TF " est lisse et intégrable : le
théoréme de Frobenius fournit I'unicité d’un germe de variété intégrable.

Si le point p est situé dans le complémentaire de I’ensemble de répulsion de S,
c’est-a-dire dans I'ensemble de répulsion de K, il existe un point ¢ dans K tel que p
appartient a la feuille instable forte F,"(¢) du point ¢ (corollaire 8.6). On pose alors
Fit(p) .= Fit (). Lorsque ¢ tend vers —oo, la dérivée du flot ®{, contracte chaque
vecteur de TF(¢) exponentiellement vite ([11]); la sous-variété immergée Fi (p) =
Fitt (@) est donc tangente a TF;". Montrons que les variétés immergées Fy, " (p), munies
de la métrique £ sont completes. D’apres [11, Theorem 5.3.25], il existe une famille
de disques compacts §, C Fy,"(r) pour r dans K qui dépend de fagon continue de r
dans la topologie lisse (en particulier ils contiennent la boule de centre r et d’'un rayon
uniformément minoré¢ dans JF, " (7)) et telle que

Fa ()= U q:'{v(acbgf(r))-

>0

Comme les applications @i, envoient F (D (g)) sur Fi (¢) de facon (ce”, de®)-
bilipschitizienne (proposition 8.3), les boules fermées centrées en (¢ dans Fyi*(g) sont
compactes. On en déduit la complétude de Fi"(p) = Fi"(¢). 1l ne nous reste plus
qu’a établir qu'un germe de surface en p tangente a TJF" est en fait contenu dans
FHE(p). Or, pour un point p appartenant a un telle surface (que I'on peut supposer
connexe), la distance d(P{y(p'), Piy(p)) converge vers 0 exponentiellement vite lorsque ¢
tend vers —oo (relier p a p par un chemin et constater que la longueur de I'image de ce
chemin par @}, tend exponentiellement vite vers 0 car la surface est tangente a TF*++).
Comme p appartient a la feuille stable du point ¢, on a également que la distance entre
&, (p) et Diy(¢) tend vers 0. On en déduit que celle entre P, (p') et Piy(¢) tend vers 0,
ce qui prouve que p appartient 2 F(¢) = F(p) et conclut la preuve de la propriété
d’unicité.

8.5.3. Construction du_feuilletage instable faible. — Comme TFi* et RW sont trans-
verses et que TF" est Oy-invariante, pour p dans P2, les ensembles

T = A (@ »)

teR
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sont des variétés immergées de dimension 3 tangentes a TFy, = TFy" + RW. Lappli-
cation (¢, p) € R x Fyi7(p) — P4 (p) € Fi(p) est un revétement et la métrique /4 sur
ce revétement est minorée par df* + e’k a une constante multiplicative prés (proposi-
tion 8.3) : les variétés immergées JFy, " () munies de la métrique % sont donc complétes.
Pour établir la propriété d’unicité, il suffit de projeter un germe en p de sous-variété N
de classe C! tangente a TFy, sur Fy, " (p) parallélement aux orbites du flot ®yy. L’image
est un germe de surface de classe C! tangente & TF;" passant par p qui est contenu
dans Fyi (p) (8.5.2), ce qui permet de conclure que le germe original N est contenu dans
F(p). Le lemme 8.9 appliqué a la famille de variétés immergées {f\xy(p)}pepz fournit
Iexistence du feuilletage instable faible Fy.

8.5.4. Construction du feuilletage stable forl. — A nouveau, nous faisons appel au
lemme 8.9 et définissons une famille de variétés Fy,~ () pour p dans P2, Si p appar-
tient a I’ensemble de Fatou, il existe un réel ¢ et un point ¢ dans dUy tels que p = P{(¢).
On pose alors Fy,~ (p) = O (F(¢) N 9Ug). Il s’agit d’une variété difféomorphe au cercle
qui, par construction (8.1), est tangente a TF;™ ; en particulier, la distribution T~ est
lisse dans I’ensemble de Fatou et la propriété d’unicité est une conséquence du théoréme
de Frobenius. La propriété de complétude est également satisfaite dans ’ensemble de
Fatou car les variétés JF;~ (p) sont compactes.

Tout point p dans I’ensemble de Julia de F privé de S est attiré vers K par le flot @y
lorsque le temps tend vers +00 et appartient donc a la variété stable forte Fy,~ (¢) d’'un
point ¢ de K. On pose Fy,~ (p) := Fyy (¢). Les propriétés de complétude et d’unicité se
prouvent de fagon analogue a celles pour les variétés instables fortes (8.5.2). Le lemme 8.9
permet de conclure a Pexistence d’un unique feuilletage Fy,~ dont la distribution tan-
gente est TFy .

8.5.5. Le feuilletage stable faible. — Par construction, la distribution TF; est égale
a TRF. Elle est donc lisse et intégrable : le théoréeme de Frobenius montre que Fyy = F
est 'unique feuilletage dont la distribution tangente est T F,.

Remarque 8.10. — La construction des feuilletages stables et instables que nous
avons décrite pour le champ W fonctionne de facon similaire pour toute reparamétrisa-
tion exp(¢)W du champ W, ot ¢ : P? — R est une fonction lisse constante en dehors
d’un compact.

Remarque 8.11. — Par construction, toutes les feuilles de Fyi" sont des sections
transverses; ce sont des courbes entiéres pour la structure holomorphe induite par la
structure transverse holomorphe de F (nous n’utiliserons pas ce fait dans ce qui suit).

Remarque 8.12. — 1l est intéressant de noter qu’au voisinage des singularités de F
le feuilletage Fy est localement le produit du feuilletage R sur dUsg par une demi-droite
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réelle, tandis qu’au voisinage de la section transverse B, il possede localement la structure
d’un livre ouvert, méme si cette structure ne se globalise pas a B tout entier : il y a un
phénoméne de monodromie le long des chemins fermés de B.

Corollaire 8.13. — Les ensembles de W -attraction (resp. de W-répulsion) de K sont contenus
dans P et ont une structure de lamination par variétés stables faibles (resp. instables).

Démonstration. — Cela résulte du fait que ces ensembles sont fermés dans P2, du
corollaire 8.6 et de la proposition 8.8. O

9. Groupe affine, ensemble hyperbolique et conjecture d’Anosov

Le but de ce paragraphe est de vérifier la conjecture d’Anosov pour un feuilletage
algébrique du plan projectif complexe satisfaisant les propriétés Pp et Ps. En particulier,
nous construisons une action localement libre du groupe affine qui nous servira pour
¢tablir la stabilité structurelle de ces feuilletages.

9.1. Action du groupe affine. — Nous noterons Aff*(R) le groupe R? muni de la loi
0 - ()= x4+ 4, t+1).

Lemme 9.1. — Soit F un feuilletage algébrique de P* satisfaisant les propriétés Py et Ps. I
existe une action localement libre et continue du groupe Aff (R) sur P2 dont les orbites sont les feuilles
de la restriction de F a P2.

Démonstration. — Soit T > 0 un nombre réel et /), » la métrique sur le fibré NzW
définie par

T
}l\j/;r!]_-(') = f }l\\rﬁf(Dq)\_/\f-)dS,
0

ou hy r est la métrique sur NxW induite par % (voir paragraphe 8.1). Définissons la
fonction

dlog }zVTV’f(D o, v)
dt |i=0

u(p) = pour v € NW(p) \ 0,

qui ne dépend pas du choix de v. Comme

_ —hw F (DO ) + g (V)
)

le lemme 8.1 montre que si T est choisi suffisamment grand, la fonction u vérifie

u(p)

b

9.1) —a<u<-—b
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pour certaines constantes uniformes a, 6 > 0. Nous définissons le reparamétrage de W
par

—2
9.2) Wi = —W.
u
Comme la restriction de W a P? est complet, I'estimée (9.1) montre que Wy est complet
également. On a de plus la formule

9.3) h\T\,f(DCID{MR v) = exp(—?t)k‘T\,’f(v) pour tout v € NxW.

Notons que, vu la forme particuliere du couple (2, W) dans Ug U Usg, la fonction u est
constante dans CDY\IA‘,(UB) U Us; en particulier toutes ses dérivées sont bornées. Le lemme
8.1 est donc satisfait pour le champ Wy a la place du champ W. Les propositions 8.3
et 8.8 sont donc également valables pour le champ Wyg (remarque 8.10) et fournissent
Pexistence d’un feuilletage stable fort Fy - sur P? de dimension réelle 1, de classe C"*
dont la distribution tangente TF est contenue dans TRF et fait un angle avec RW
minoré par une constante strictement positive.

Nous notons X le champ de vecteurs continu sur P? qui est tangent a Fyy, dont
la projection dans NyW = TR F/RWg est de norme 1 vis-a-vis de la métrique 7y » et
orienté de sorte que le couple (X, Wg) forme une base directe de TR F. Nous introdui-
sons la métrique continue A7 sur TR F comme étant I'unique métrique rendant la base
(X, Wgr) orthonormale :

(9.4) M X) =M Wr, W) =1 et A(X, Wg)=0.

Lemme 9.2. — La restriction de i a toute feuille de Jp2 est complete.

Démonstration. — Comme les métriques Ay, » et hy,F sont bornées 'une par rap-
port a autre a des constantes multiplicatives pres et que ’angle entre X et Wy est minoré
par une constante strictement positive uniforme, la métrique 4 et la restriction de % au
feuilletage sont majorées I'une par rapport a I'autre a des constantes multiplicatives stric-
tement positives pres. Le résultat découle de ce que la restriction de £ aux feuilles de Fp2
est complete. UJ

Nous définissons le flot ®x = {P%},cr de la fagon suivante : pour tout p € P2,
t = DL (p) estle paramétrage de classe C' de la feuille de Fyy, passant par p, isométrique
vis-a-vis de la métrique 4", respectant I'orientation et envoyant ¢ = 0 sur ®%(p) = p. Il est
bien défini pour tout temps d’apres le lemme 9.2. Par définition de ®x, on a les relations
D = ®L o ® pour tous £,/ € R, ainsi que

Dy (p)

9.5
< ) 0t =0

=X(p) pour tout p.
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Dr’autre part, ®x est un flot continu puisque la distance entre p et @ (p) est majorée
par |¢| pour la métrique A", donc par une constante fois |¢| pour la métrique £, ce qui
montre que O converge uniformément vers 'identité sur tout compact.

La construction de ®x ainsi que (9.3) montrent que les transformations @y,
¢changent les feuilles de Fyy, en leur appliquant une contraction (vis-a-vis de 2") d’un
facteur ¢’ et en préservant leur orientation donnée par X. Nous avons donc les relations

(9.6) Dl 0 DY = DY o Dl

pour tout (x, #) € R%. Nous obtenons alors une action continue 7 : Aff*(R) x P2 — P?
par la formule

9.7) T(x, b, p) = @{\,R o @y (p) pour tous (v, 1) € Aff"(R), pe Pi.

Cette action est localement libre d’apres (9.5) (ainsi que la relation analogue pour Wg
qui est lisse) et X et Wg sont linéairement indépendants en tout point. Les orbites étant
contenues dans des feuilles de la restriction de F a P2, ce sont donc des ouverts dans ces
derniéres qui sont connexes. O

9.2. Structure hyperbolique, structure affine et topologie des feuilles. — Etant donné un point
p € P2, la feuille de la restriction de F a P? passant par p est F(p) \ B. Notons 7, : R —
F(p) \ B le paramétrage défini par

9.8) 7, (x, ) i =7 (x, £, ).

Lemme 9.3. — Les applications 1, sont des immersions de classe C' qui induisent des revéle-

ments de R* dans F (p) \ B.

Démonstration. — En vertu de (9.5) et de I'identité analogue pour Wy qui est lisse,
ainsi que des relations (9.6), Papplication 7, admet des dérivées partielles par rapport a x
et ¢ égales a

07, (x, 1) .

0 )
5 = eitX(rrp(x, zf)) et M =
X

y We (77, (x, ).

Ces derniéres étant continues et linéairement indépendantes, 7, est une immersion de
classe C'!. Par construction, on a

9.9) ()" W = e di® + dP,

et comme la restriction de A" & F(p) \ B est compléte, 7, est une isométrie locale entre
deux variétés riemanniennes compleétes, et en particulier un revétement. UJ
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Notons que si ¢ = (‘,‘\,R o Y (p) est un autre point dans F(p) \ B, la relation (9.6)
montre que

m,(x, 1) = np(e’ox + xg, t + to).
Les transformations du plan R? définies par
(9.10) (x, 1) — (elox + xo, t + to)

forment un groupe qui préserve une triple structure géométrique : la métrique rieman-
nienne ¢ 2'dx* + di* qui est compléte et de courbure constante —1, la structure affine
de R? ainsi que le champ de vecteur vertical % La famille d’applications 7, conférent
donc aux feuilles de F cette triple structure géométrique.

Proposition 9.4. — Les fewilles non simplement connexes de F sont des anneaux qui contiennent
une unique trajectoire périodique de W dans Uensemble hyperbolique K. En particulier, les séparatrices
de F sont des anneaux. Réciproquement, loute trajectorre périodique de W dans K est contenue dans une

Jewille annulaire de F .

Démonstration. — Comme I’ensemble de Fatou est égal a I’ensemble errant D, dans
lequel toutes les feuilles de F sont simplement connexes, une feuille non simplement
connexe est contenue dans I’ensemble de Julia.

Notons que le rayon d’injectivité des feuilles de la restriction de F a ’ensemble de
Julia munies de la métrique 4" est uniformément minoré. En fait, le rayon d’injectivité
est une fonction continue qui tend vers 'infini lorsque I'on se rapproche de I’ensemble
singulier. En effet, comme X ne s’annule pas, il existe / > 0 tel que I'orbite par le flot ®x
de tout point du bord dUg d’un voisinage Ug de S est de période strictement supérieure
a 2. Soit p dans Us et T =inf{t > 0 ; Py, (») € dUs}. Puisque 7, est injective sur
Ay =[—Lle", le"]x ]—00, T], on en déduit que le rayon d’injectivité en p = ,((0,0)) dela
métrique 4" est minoré par le rayon maximal possible pour une boule centrée en (0, 0) et
contenue dans Ar, ce dernier tendant vers I'infini lorsque p tend vers ’ensemble singulier.

Soit p un point régulier de 'ensemble de Julia. La feuille F(p) de F passant par p
ne rencontre pas la surface B. Le lemme 9.3 montre que F(p) est isomorphe (munie de
sa triple structure géométrique) au quotient de R? par un sous-groupe du groupe des
transformations (9.10) qui agit librement, proprement et discontiniment. Un tel groupe
est nécessairement cyclique, engendré par une transformation (x, t) — (¢°x + xo, ¢ + ).
Observons que 4 # 0 car le rayon d’injectivité des feuilles pour la métrique £ est uni-
formément minoré par une constante strictement positive. Si ’'on désigne par x; € R le
point fixe de x > ¢"x + xy, la verticale {x;} x R se projette via 7, sur une orbite pério-
dique de Py, ; de plus, toute autre trajectoire périodique est de cette forme. Ainsi, toute
feuille non simplement connexe est annulaire et contient une unique orbite périodique
non constante de Wxy.
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Réciproquement, toute orbite périodique de Wy passant par un point p se releve
via le revétement 7, en la courbe verticale {x,} x R. L’application 7, est donc non injec-
tive et la feuille passant par p est non simplement connexe, donc annulaire comme nous
I’avons vu.

La proposition (9.4) découle alors du fait que W et Wx ont les mémes orbites. [J

9.3. Comjecture d’Anosov. — Nous terminons cette partie en établissant que les
feuilletages satisfaisant les propriétés Py et Ps vérifient la conjecture d’Anosov.

Théoreme 9.5. — Soit F un _feuilletage algébrique de P* satisfaisant les propriétés Py et Ps.
Alors, toutes les feuilles de F sont simplement connexes, sauf un nombre dénombrable qui sont des anneaux
d’holonomue hyperbolique.

Démonstration. — Comme I'ensemble hyperbolique K ne contient qu’un nombre
dénombrable d’orbites périodiques pour W (corollaire 8.7), la proposition 9.4 montre
qu’il n’y a qu'un nombre dénombrable de feuilles non simplement connexes. D’autre
part, chaque feuille annulaire contient une orbite périodique non constante du champ W
qui est contenue dans K. D’aprés le corollaire 6.3, 'holonomie de F le long de cette
orbite périodique est un germe de transformation dilatante, donc hyperbolique. UJ

Corollaire 9.6. — Soit F un_feuilletage algébrique de degré d > 2 de P* satisfaisant les pro-
priétés Py et Ps. Alors, F w'a pas de courbe algébrique invariante.

Démonstration. — En effet, si une telle courbe C existait, d’apres le théoreme 9.5,
elle serait rationnelle puisque C \ S serait annulaire. Elle serait donc lisse de degré 1
ou 2 et contiendrait deux singularités de F, ou bien elle serait de degré 3 avec un point
double qui serait 'unique singularité de F contenue dans C. Or, d’apres [5, Prop. 2.3],
onaNF -C=Z(F,QC)+ C2, ce qui est absurde puisque NF est de degré > 4 alors que
Z(F, C) =2 (dans les deux premiers cas) et Z(F, C) = 0 (dans le troisiéme cas). O

Remarque 9.7. — Voir la remarque 11.7 pour une autre preuve du corollaire 9.6.
Par ailleurs, notons également qu’on peut en déduire qu’il n’y a pas non plus de courbe
entiere tangente a un tel feuilletage. En effet, d’apres [7], une telle courbe entiére per-
mettrait de construire un courant positif fermé invariant dont le support contiendrait une
singularité. Compte-tenu de la nature des singularités de J, un tel courant serait donc
réduit a un courant d’intégration sur une courbe algébrique invariante.

10. Stabilité structurelle

Dans cette partie nous démontrons le théoréme de stabilité structurelle.
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Théoreme 10.1. — Soit F un_feuilletage algébrique complexe de P* de degré d satisfaisant les
propriétés Py et Ps. Alors, tout feulletage algébrique complexe de degré d suffisamment proche de F lui
est topologiquement conjugué.

Nous utiliserons la topologie sur 'espace des feuilletages algébriques complexes
de P? définie par le quotient de la topologie naturelle sur I'espace des champs de vecteurs
homogenes (non nuls) de degré d sur C* : deux feuilletages F et F’ sont proches s’ils
peuvent étre définis par des champs de vecteurs homogénes de degré d sur G* qui sont
proches. Il est immeédiat de vérifier que les propriétés Py et Ps sont ouvertes pour cette
topologie.

10.1. Stabilité structurelle de Uensemble de fulia. — Nous établissons que I'ensemble
de Julia de F est structurellement stable dans le sens suivant : si F” est un feuilletage
algébrique complexe de degré d suffisamment proche de F, son ensemble de Julia est
topologiquement conjugué a celui de F.

On rappelle que V désigne un champ de vecteurs homogene sur C* \ {0} de de-
gré d qui ne s’annule pas, de divergence nulle tel que la projectivisation de Fvy est le
feuilletage F. De plus, si V' est un autre champ (de degré ¢ qui ne s’annule pas et de
divergence nulle), on notera F' le feuilletage de P? induit par V', W’ le champ défini
au paragraphe 4.3 qui est associé¢ a V', B’ 'ensemble des singularités de W’ le long des
feuilles de F, etc.

Proposition 10.2. — 11 existe un voisinage de V dans Uespace des champs de vecteurs homogenes
de degré d qui ne s’annulent pas et de divergence nulle sur C* tel que pour tout N dans ce voisinage, il
existe un homéomorphisme v : P>\ B — P>\ B’ qui conjugue orbitalement les flots vy et Ovyr. De
plus, W converge vers Uidentité (pour la topologie compacte ouverte) lorsque V' tend vers V.

Démonstration. — Rappelons que nous avons noté¢ Uy (resp. Ug) un voisinage de B
(resp. de S) dont le bord est transverse 4 W et sur lequel F est un fibré lisse localement
trivial en disques au-dessus de B (resp. un voisinage de linéarisation de S, lemmes 4.8 et
4.11). Si V' est choisi suffisamment proche de V, on pourra supposer que Up = Uy et
que Uy = Ug; on aura en particulier les inclusions B’ C Uy et 8" C Ug, et le fait que W’
est transverse sortant a dUg et transverse rentrant a d Up.

Nous allons appliquer le théoreme [23, Theorem C, p. 3] de Robinson pour mon-
trer que la restriction de @y a la variété a bord M = P? \ Int(Ug U Ug) est structurelle-
ment stable. Comme le champ W est transverse a M, il suffit de montrer que I’ensemble
récurrent par chaine est hyperbolique et que les variétés instables fortes de ce dernier in-
tersectent les variétés stables faibles transversalement. Or, ou bien les trajectoires de @y
dans M sont contenues dans K, ou bien elles intersectent le bord de M. Donc ’ensemble
récurrent par chaine est contenu dans K ; il est ainsi hyperbolique d’apres la proposition
8.5. De plus, les feuilles stables faibles des W-trajectoires sont les feuilles de F puisque F
est le feuilletage stable faible pour la métrique % (section 8.5). Quant aux feuilles instables
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fortes de W-trajectoires, ce sont des sections transverses du feuilletage F (section 8.5) :
en particulier, I’hypothése de transversalité est donc bien satisfaite et le flot ®yy est orbi-
talement structurellement stable sur M. On pourra donc trouver un homéomorphisme
¥ : M — M qui envoie les trajectoires de Py sur celles de @y. On étend ¥ a un ho-
méomorphisme de P? dans P2’ en posant pour tout ¢ > 0

(10.1) Y (P () = Py (v (p) si pedUs

et

Y (D) = Py (¥ (p) si pedUs.

L’homéomorphisme 1 défini de cette facon se prolonge par continuité a I’ensemble S en
un homéomorphisme v : P\ B — P?\ B’ qui conjugue orbitalement ®y, et ®y. Cela est
di au fait que les singularités de F (resp. de F') sont des sources pour W (resp. W'). [

Lemme 10.3. — Les fewlles de F qui intersectent K sont exactement les feuilles de Uensemble
de Julia J(F) de F.

Démonstration. — L’ensemble de Julia J(F) est ’ensemble des points dont la tra-
jectoire par @y tend vers K dans le futur. D’apres le corollaire 8.6, J(F) est 'union
des feuilles stables faibles des points de K, c’est-a-dire des feuilles de F qui inter-
sectent K. UJ

Corollaire 10.4. — L'ensemble de Julia de F est structurellement stable. Plus précisément,
Uhoméomorphisme " construit a la proposition 10.2 induit par restriction un homéomorphisme r

JF), F) = JF), F).

Démonstration. — Le saturé de dUyp par @y (resp. Pyw) est 'ensemble de Fatou
de F (resp. celui de F'). Comme ’homéomorphisme ¥ envoie dUy sur lui-méme et qu’il
conjugue orbitalement @y a ®yy, il envoie P'ensemble de Fatou de F sur celui de F’
et, par conséquent, ’ensemble de Julia de F sur celui de F'. De méme, ’homéomor-
phisme ¥ envoie Rép,, (S) sur Rép, (S') et, en particulier, K sur K. Comme ¥ est une
conjugaison orbitale, il envoie les feuilles stables faibles pour @y des points de K sur les
feuilles stables faibles pour @y des points de K'. Or ces derniéres sont les feuilles de F
(resp. ') qui intersectent K (resp. K'). Le lemme 10.3 permet de conclure. 0J

10.2. Intermede : les bandes. — Pour construire une conjugaison globale, nous au-
rons besoin d’étudier la restriction du feuilletage J (ainsi que des structures géométriques
sur ces feuilles induites par les coordonnées 7, éq. (9.8)) a I'ensemble de W-répulsion du
lieu singulier de F (ou ce qui revient au méme, au complémentaire de ensemble de
W-répulsion de I’ensemble hyperbolique K) : nous appellerons bande une feuille de la
restriction de F a cet ensemble.
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Lemme 10.5. — Soit s € S. Les deux feurlles annulaires de la restriction de F a Ini(U)
(lemme 4.11) sont contenues dans des bandes annulaires. Les autres bandes de Répy(s) sont simplement
connexes et accumulent sur les deux bandes annulaires. L'union des bandes simplement connexes contenues
dans Rép\y(s) est un ouvert sur lequel le feuilletage est un fibré lisse topologiquement trivial par disques
au-dessus de la courbe elliptique Ei.

Démonstration. — Comme les trajectoires de W dans U, tendent en —oo vers un
point s de S et sortent transversalement a dU; en temps fini, la restriction du feuilletage F
a I'ensemble Répy,(s) est le produit de I'intersection du feuilletage F avec 0U; avec la
droite réelle. Le résultat découle alors du lemme 4.11. UJ

Etant donné s € S, nous notons A= (s) les deux bandes annulaires contenues dans
Rép,y(s). Le signe est déterminé par la propriété suivante : ’holonomie de F le long d’un
lacet de BT (s) (resp. B~ (s5)) d’indice positif vis-a-vis de s est dilatante (resp. contractante).

Définition 10.6. — Soit B une bande et p € B. La composante connexe de np*' (B) C R?

contenant le point (0, 0) est un ouvert connexe invariant par le champ % dans les coordonnées (x, t) € R?
(car I'image de ce dernier par la différentielle de 1, est le champ Wy qui laisse mvariant B); elle est
donc de la_forme 1, X R oul 1, est un invervalle ouvert contenant 0.

Lemme 10.7. — Etant donné s € S, les bords de BE(s) dans leurs feuilles respectives sont des
orbites périodiques du flot W. De plus, pour tout p € BT (s) (resp. p € B (5)), Uintervalle 1, est de la
Jorme ]—00, x1[ (resp. 1x1, +00[) avec x; € R.

Démonstration. — Le sous-ensemble I, x R C R? est invariant par un automor-
phisme non trivial du revétement 7, de la forme (¢"x + xo, £ + %) avec ¢ non nul (propo-
sition 9.4). L'intervalle I, est alors invariant par x = ¢x 4 xy, et ne contient pas son point
fixe x; = x0/(1 — €"), sans quoi la bande contiendrait une orbite périodique de W (ce qui
est impossible car une telle orbite n’intersecte pas 'ensemble de répulsion de Rép,,(S).
Il n’y a que deux intervalles non vides de ce type : ]x;, +00[ ou ]—00, x|[. Le bord de
B*(s) dans la feuille de F dans laquelle elle est contenue est la W-orbite m,(x; X R) qui
est périodique. Cette orbite périodique est d’holonomie dilatante, donc la bande B (s)
se situe a gauche de cette orbite et la bande B~ (s) a droite. ]

Lemme 10.8. — Soit s € S. Pour tout point p appartenant a une bande simplement connexe
B C Répy(s), lintervalle 1, est borné. Il existe un unique pont o (p) € B tel que 1oy =1—1, 1[.
Lapplication p € Répy,(s) \ (BT (s) UB7(5)) > o (p) € Répy,(s) \ (BT (5) U B (s)) est continue,
constante le long des bandes et son image X est une section transverse torique continue de F biholomorphe
a la courbe elliptique E; (lemme 4.11).

Démonstration. — Les bandes non annulaires, qui s’accumulent sur chacune des
bandes annulaires 87 (s) et B7(s) (lemme 10.5), contiennent dans leur bord une tra-
jectoire de W située dans la variété instable faible des W-orbites périodiques d8%(s)
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(lemme 10.7). Ceci montre que I, est un intervalle borné et que les applications qui a
un point p appartenant a Rép,(s) \ (87 (s) U B~ (5)) associent les extrémités positives et
négatives de I'intervalle I, sont continues. L'existence et I'unicité du point o () découle
alors de la formule suivante : pour tout (x, ) € [, x R,onal ) = ¢”'(I, — x). La conti-
nuité de o est une conséquence de la transversalité¢ de la lamination Rép,, (K) avec le
feuilletage F, ainsi que de la continuité de 'action 7 (lemme 9.1). L’application o est par
construction le quotient de 'ouvert Répy, (s) \ (B*(s) U 87 (s)) par le feuilletage : I'image
de o est donc biholomorphe a E;. OJ

Définition 10.9. — Soient TF les projections de T, sur Uensemble de répulsion Répy, (K)

définis par les images respectives des applications
pe > m,((£1,0)) € Rép (K).
On note & (resp. =) Lunion des =, (resp. TF) pour s € S.

Une bande simplement connexe 8 admet deux composantes de bord %8 dans la
feuille dans laquelle elle est contenue : 3% est la composante de bord dont I'orientation
coincide avec celle de W, 078 celle dont 'orientation est contraire a celle de W. Si
peBNX, alors 0" =m, (1 x R) et 3- B =m,(—1 x R). Les points de X+ se situent
donc sur les bords positifs des bandes simplement connexes et ceux de X~ sur les bords
négatifs de ces dernieres.

10.3. Stabilité structurelle globale. — Dans ce paragraphe nous terminons la démons-
tration du théoréme 10.1 en construisant une conjugaison entre F et F” qui coincide avec
n’importe quel homéomorphisme /: B — B’ tel que

(10.2) supd(p, ()

peB

soit suffisamment petit. La stratégie consiste a modifier '’homéomorphisme ¥ construit a
la proposition 10.2 sur le complémentaire de I’ensemble K. Cette modification a lieu en
deux temps.

On modifie dans un premier temps ¥ sur 'ensemble Rép,,(K) de facon a
construire un homéomorphisme W : Rép,,(K) — Répy,,(K'). Puis, dans un second
temps, on étend W au complémentaire de Rép,,(K) qui est égal a 'ensemble de répul-
sion Répy,(S) pour construire un homéomorphisme global de P qui conjugue F a F’
via une formule explicite dans chaque bande.

10.3.1. Construction de V.

Proposition 10.10. — 1l existe un homéomorphisme W : Répy,(K) — Répy,, (K') satisfaisant
les conditions suwvantes :
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(1) pour toute fewille ¥ de F, il existe une fewille ¥' de F' telle que
W (F N Répy(K)) =F N Répyy, (K') 5

(2) pour toute bande simplement connexe B de J , 1l existe une bande simplement connexe B’ de
F telle que

Y (9*p)=0"p.
De plus, 1l extste une byection s € S+ s" € S’ telle que
W(9B* () =3B (s);

(3) il existe des constantes a, b > O telles que \V induit une (a, b)-quasi-isométrie entre le
revétement universel d’une W -trajectoire et celur de son image par W (dans les paramétrages
donnés par les temps des champs W et W' respectivement) ;

(4) 1l existe une constante ¢ > O telle que pour tout point p € XF (voir définition 10.9) il existe
P eXF eteR tels que |t] < cet W(p) = DL (p).

Démonstration. — Nous choisirons des perturbations V' suffisamment petites de V
de fagon a ce que 'on puisse construire les voisinages Up et Ug de B’ et S’ respectivement
égaux a Uy et Us comme dans la preuve de la proposition 10.2.

Notons 7 : 90U — B la projection parallele au feuilletage F. Il s’agit d’un fibré
localement trivial en cercles au-dessus de B. L’ensemble Rép,,(K) posséde une struc-
ture de lamination par variétés instables faibles du flot @y qui sont des variétés lisses de
dimension 3 (corollaire 8.13) : cette lamination intersecte le fibré my transversalement.
Ainsi, pour tout b € B, sil’on note G, := 7y "N Répy, (K), il existe un voisinage V, de b
dans B ainsi qu'un homéomorphisme

(10.3) Fy:my (V) — 75 (b) x Vy

tel que 7 = pry, o F; et F;(Répy,(K) N7y 'Wy) = C; x V, (les plaques instables faibles
étant envoyées sur les verticales p x V). La restriction de I, a my vy n Répy (K) est
unique.

De facon analogue, nous définissons un fibré en cercles my : 9Up — B', le point
b = l(b), Pensemble C}, := Jrf;l(b’) N Atty (K'), le voisinage V, :={(},) de ' € B et
’homéomorphisme F), : 75, ' (V) — 7' (0) x V).

L’homéomorphisme ¥ : P2 — P2’ applique Rép,, (K) sur Rép,,, (K'), en envoyant
une feuille instable faible de W sur une feuille instable faible de W’ (corollaire 10.4). De
plus, ¥ envoie Uy sur dUp = dUp et converge vers I'identité dans la topologie compacte
ouverte lorsque V' tend vers V. Si le supremum (10.2) est suffisamment petit, I'image de
la courbe 7y Y(b) par ¥ est donc contenue dans le voisinage 7y, ! (V}). Dans les cartes I,
et F;,:Z(b), Y prend alors la forme

(10.4) Fyov oF; ' (p, ) = (1), ¢ (b, ),
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sur un voisinage suffisamment petit de G, x {6} dans C, x V), tout en s’étendant en un
homéomorphisme d’un voisinage de Y(b) x {b} dans Ty Y(b) x V,. Ceci nous permet
de définir une transformation

W, : 9Up NRépyy (K) — dUp N Répy, (K')

par
(10.5) FyoWooF, ' (p,0)= (). ¢ =10).

Echanger le réle de ¥ et ! méne a la construction de I'inverse de Wy. Ce dernier est
donc un homéomorphisme qui vérifie les propriétés suivantes.

Lemme 10.11. — L'application Y définie par (10.5) induit un homéomorphisme
dUg N Répyy (K) — U N Répy, (K)
vérifiant :

— pour tout p € IUp N Répy,(K), Wo(p) appartient @ Fy (Y (p)) 5

— pour tout b € B, Wo(Cy) = Cjyyy 5

— pour tout b € B, et toute composante connexe 1 de 75" (b) \ Répy,(K) dextrémités positives
et négatives %1, il existe une composante connexe I de 7'[1;1 (U(b)) \ Répy, (K" dextrématés
positives et négatives =1 telle que

Wy (0*1) =0T

Dans cet énoncé, il est important de noter que les fibrés en cercles 7 et 7y sont
orientées par 'orientation des feuilletages F et F'. Il y a donc bien un sens a parler des
extrémités positives et négatives d’un intervalle contenu dans une fibre. Notons également
que I'intervalle I du lemme 10.11 ci-dessus est contenu dans une bande B telle que I =
BNAUg et 3¥I = 9*B N IUp.

Pour définir I'application W : Rép,,(K) — Rép,,(K’), il nous faut introduire le
cocycle instable faible sur les feuilles instables faibles du flot W’ : étant donné deux points
x, 9 € Répy,,(K’) \ K’ qui appartiennent a la méme feuille instable faible du flot ®yy, il
existe un unique réel ¢'(x, y) € R tel que QD:/NS}X’” (x) € .}"\J{f (») ou, en d’autres termes, tel
que

(10.6) A (), DL, () —— 0.

Ce cocyle est continu comme fonction de x et y, du fait de la structure de lamination
par variétés instables fortes de ’ensemble de W-répulsion de K (section 8.5). Notons
que la convergence (10.6) est exponentielle et uniforme pour (x, ) dans un compact. En
particulier, la fonction p € Rép,,(K) N dUg = ¢ (¥ (p), Wo(p)) € R est continue.
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Tout point ¢ € F(F) N Rép,,(K) s’écrit de fagon unique sous la forme ¢ = ®{,(p)
avec p € 0Ug N Rép,, (K) et # € R. Ecrivons

v (g) =Py (V)

pour un certain T = 7(¢) qui tend uniformément vers —oo (resp. +00) lorsque ¢ tend
vers J(F) (resp. B). Définissons W sur F(F) N Répy, (K) par la formule

(10.7) W(g) = Dy VO (W ().
Observons que la limite (10.6) donne

(10.8) lim d(¥(g), ¥(g)) =0.

g€(F(F)NReépyy (K))\Int(Up)— 00

Le lemme suivant termine la démonstration de la proposition 10.10. O

Lemme 10.12. — La transformation
W : Répy (K) — Répy (K)

définie par (10.7) sur F(F) N Répy (K) et par Y sur K = J(F) N Répy, (K) est un homéomorphisme
qui vérifie les propriétés de la conclusion de la proposition 10.10.

Démonstration. — Les propriétés (1) et (2) de la proposition 10.10 découlent immé-
diatement du lemme 10.11 en restriction a chaque feuille du domaine de Fatou de F.
[’homéomorphisme ¥ envoie les feuilles de I’ensemble de Julia de F sur celles de I'en-
semble de Julia de ', et 'ensemble Rép,, (K) sur ensemble Rép,,, (K') : en particulier,
il envoie les bandes de F contenues dans ’ensemble de Julia de F sur des bandes de F’
contenues dans ’ensemble de Julia de F'. Comme par définition W est égal a V¥ sur
I'intersection de 'ensemble de Julia de F avec Rép,, (K), les propriétés (1) et (2) de la
proposition 10.10 sont également satisfaites sur les feuilles de 'ensemble de Julia de F.

Montrons que W est un homéomorphisme. Par construction, c’est un homéomor-
phisme en restriction a Répy, (K) N F(F) (lemme 10.11). Pour montrer que ¥ définit un
homéomorphisme globalement, 'unique point délicat est la continuité de W en un point
de 'ensemble de Julia de F. Or si (p,), est une suite de points de dom(¥) = Rép,, (K)
qui converge vers un point po, € J(F), on peut décomposer la suite (p,) en deux sous-
suites () et (py,); avec p,, € F(F) NRépy(K) et p,, € J(F). Il est clair que, a supposer
que la sous-suite (p,,); soit infinie, on a lim; ¥ (p,,) = ¥ (p) puisque ¥ et ¥ coincident
sur J(F) et que ¥ est continue. Quant a la suite (p,, ), a supposer qu’elle soit infinie, la
limite (10.8) nous donne

d(Y () W (poo) = ¥ (b))
< d(Y (s ¥ () + AW (b)) ¥ (poe) — 0,

ce qui conclut la preuve de la continuité de W le long de la suite (p,).
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D’apres la proposition 10.2 (et plus précisément éq. (10.1)), ’'homéomorphisme
W : Répy (K) = Répy,, (K') est, en dehors d’un compact de Rép,,(K), une conjugaison
entre les flots induit par W et W’ (proposition 10.2). Le troisieme item de la proposi-
tion 10.10 est donc satisfait par W.

Enfin, en vertu du troisieme item du lemme 10.11 ainsi que de la compacité de £+,
le quatriéme item de la proposition 10.10 est également satisfait pour W. La démonstra-
tion du lemme 10.12 est achevée. U

10.3.2. Extension de V sur Rép,(S). — Nous définissons dans ce paragraphe une
application

W : Répy(S) = Répy (),
qui est, en restriction a chaque bande 8 de F, une extension de W. Il y a deux cas :

Premier cas : B est simplement connexe. Considérons la bande B (pour le champ W)
associé¢e a B (proposition 10.10). Soit p € B (resp. p' € B') le point tel que I, =]-1, 1]
(resp. Iy =]—1, 1[) donné par le lemme 10.8.

L’homéomorphisme W induit un homéomorphisme Wg de 9([—1, 1] x R) défini

par

/
ﬂp,olllﬂzllloﬂp.

Etant donné ¢ € R, considérons les points P* = (£1,7) € 3([—1, 1] x R) et QF :=
\I’ﬁ(Pi) € 3([—1, 1] x R). On subdivise I'intervalle orienté [P, P*] =[—1, 1] x {t} Cc R?
en trois intervalles I™, I, I, ordonnés par ordre croissant, avec I~ et I de longueur

10.9) )= (e P ([Q Q).

ou [P7,P™] et [Q7, Q"] sont les segments affines entre les points P* et QF respecti-
vement vis-a-vis de la structure affine naturelle de R? et la longueur / étant mesurée
relativement a la métrique hyperbolique e *dx* + di*.

Définissons ’extension \INJﬁ de Wy a [—1, 1] x R par les conditions suivantes. Pour
toutteR:

— I'image par {ffﬂ du segment [P, P*] est le segment affine [Q~, QF];

— larestriction de qfﬁ aux segments I respecte la longueur d’arc (pour la métrique
hyperbolique ¢~ *dx* + d*);

— la restriction de {IVJ/; au segment I” dilate les longueurs par multiplication par
une certaine constante (qui dépend de ¢).

On définit Pextension ¥ de W a B via la formule

(10.10) 7ol =Wom,.
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Deuxieme cas : B nest pas simplement connexe. — Supposons que f soit une bande
annulaire positive. Il lui correspond une bande positive ' de F' (voir le deuxieme item de
la proposition 10.10). Soient p € B, p' € B'. En reprenant les notations du lemme 10.7, les
applications 7, n/;, induisent des homéomorphismes (¢°x 4 xo, ¢ + )\ (]—00, x; [ xR) —
B et (dox + xy, L+ 1)\ (]—00, x| [ xR) — B’. La restriction de 'homéomorphisme ¥ a
dp induit donc un homéomorphisme Wy : (¢”x + xo, £ + fH) \(x; X R) — (eox + xg, ¢+
)\ (¢} x R) satisfaisant

\Ilonp:nl}ollfﬁ.

Lapplication Wg se reléve a un homéomorphisme de x; X R de la forme x) X /5 ot /g est
un homéomorphisme de R. On étend alors Wz a ’lhoméomorphisme Wy : (¢”x + xo, ¢ +
0)\(1—00, x1] x R) = (éhx + x;, £+ 1)\ (]—00, ;] x R) défini par

@ﬁ(x, /) mod (etox + xg, t + to)
i= () + PO (x = ¥)), kg () mod (ox + xp, ¢ +8)).

Il s’agit du prolongement de Wg qui envoie le le feuilletage horizontal de ]—o00, x;] x R
sur celui de ]—00, x}] X R en préservant la longueur d’arc sur les feuilles de ce dernier
relativement & la métrique hyperbolique ¢ ?'dx* + df*. Enfin, on définit Pextension W
de ¥ a B via la formule (10.10). Si B est une bande annulaire négative, on procede de
fagon analogue.

Lemme 10.13. — WU est continue.

Démonstration. — Le lemme 10.8 ainsi que la construction de U dans les bandes
simplement connexes montrent que W est continue en dehors des bandes annulaires.
Elle est de plus continue en restriction a chaque bande annulaire. Il nous suffit donc de
montrer qu’elle admet une limite le long de toute suite de points p, appartenant a des
bandes simplement connexes 8, et convergeant vers un point p appartenant a une bande
annulaire B et que cette limite est égale a W (p).

Nous supposerons que B est une bande annulaire positive, le cas d’'une bande né-
gative se traitant de fagon similaire. Soient 7, := 75, : |—1, [ xR — B, et m, = n;,%) :
]—1, I[ xR — B/ (voir lemme 10.8). Notons P, = (x,, t,) = n;l(pn) les coordonnées des
points p, et introduisons les points

Q, =V, (P) = (¥,1), PE=(£1,4) et QF =V, (PF) = (£1,47),
et les points correspondant dans P?
pr=m(B)), pr=m(PT) et gy =m(Q)).

Enfin, si I, =]—00, /[ pour un certain nombre / > 0 (car B est une bande annulaire
positive), notons p, = 7,(/, 0).
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On a ﬂpn(x’ t) = (e_[n(x - xn)»l/l - tn): donc Ipn :]_e_tﬂ(l + xn)a e—[n(l - xn)[-
Comme I, converge vers I,, on obtient

t,—> —o0o0 et ¢ "(1—x)—>L
n— 00 n— 00
Les troisieme et quatrieme items de la proposition 10.10 montrent que, en posant
d=b+c:

(10.11) ' —d<tF <al,+d.

On en déduit que les longueurs des segments [P, PF] et [Q, Q] (mesurées avec la
métrique hyperbolique ¢ *dx* + df*) tendent vers P'infini lorsque 7z tend vers Iinfini, et
que Q, est le point situé sur le segment [Q., Q] a distance [, = {([P,, P/]) car cette
derniére tend vers [ et reste donc bornée.

On a, par définition de I'extension ¥ : ¥ (p) = ¢, par suite ¢ converge vers
Y (pT). D’autre part, la longueur du segment [¢,, ¢/] converge vers /. Pour conclure, il
nous suffit donc de montrer que I'angle entre le segment [¢; , ¢/] et le bord droit de 8/
tend vers 77/2 pour la métrique hyperbolique ¢=*dx* 4 di*. Pour cela, plagons-nous dans
les coordonnées données par nq/ + + les points gt et ¢, ont alors pour coordonnées respec-

tives (n;+)_1(q:) = (0,0) et (nq’+)_1(q;) = (—Qe_‘;+, U= t,’lJr) et le bord gauche de B/
est ’axe vertical (n(})*l((‘)*ﬂ;) = {0} x R C R%. On a donc bien le résultat en vertu de
I'estimation (10.11) qui donne

7t/+

tf—tf:o(e ). O
Lemme 10.14. — Lapplication P?> — Pi/ définie par W dans Rép,,(K) et par W dans
Répy(S) s'étend en un homéomorphisme de P* dans lui-méme qui conjugue topologiquement les feuille-

tages F et F'.

Démonstration. — Considérons une suite p, de points de P? qui converge vers un
point p., appartenant a Rép,, (K). Pour voir que W(p,) converge vers W (), 1l suffit
de supposer que p, ¢ Rép,,(K) ou, de fagcon équivalente, que p, € Rép,,(S). Comme
Répy(K) a la structure d’une lamination de dimension 3 réelle transverse au feuille-
tage JF (corollaire 8.13), on pourra trouver une suite de points ¢, qui sont des extrémités
du segment horizontal contenant p, dans sa bande et tels que d(p,, ¢,) = 0. La suite ¢,
converge donc vers . Par définition de W sur Rép,,(K), on déduit (¥ (p,), ¥(g,)) — 0
puis Iim W (p,) =lim ¥ (¢,) = ¥V (p). La continuité de ¥ est ainsi démontrée.

Tout homéomorphisme de P2 dans P2’ qui envoie les feuilles de F sur celles de F'
s’étend en un homéomorphisme de P? qui conjugue topologiquement les feuilletages F

et F'. O
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11. Etude des sections transverses

Etant donné un feuilletage algébrique complexe F de P?, on rappelle qu’une sec-
tion transverse de F est une surface réelle Z C P? \ S de classe C! et transverse a F en
tout point. Une telle surface hérite naturellement des structures transverses du feuille-
tage J et, en particulier, d’une structure de surface de Riemann. Dans la suite, on munit
les sections transverses de 'orientation induite par leur structure de surface de Riemann.

11.1. Des sections transverses toriques. — Commencons par donner des exemples de
sections transverses dans les voisinages arbitrairement petits des singularités hyperbo-
liques.

Lemme 11.1. — Etant donné un_feuilletage algébrique F de P?, au voisinage de toute singu-
larité hyperbolique de F, 1l existe une section transverse arbitrairement proche de la singularité qui est
biholomorphe a la courbe elliptique G/ (ZX 4 Ziv), ou X et | sont les valeurs propres d’un champ de

vecteurs définissant F .

Démonstration. — On reprend les notations de la démonstration du lemme 4.11. La
restriction de I'intégrale premiere (4.7) a la surface torique d’équation 'T' = {|u| = |[v| =}
avec 0 < 7 < r induit un biholomorphisme entre T et C/(ZA 4+ Z). [

Une généralisation de cette méthode permet de construire une section transverse
torique dans le voisinage de n’importe quel lacet d’holonomie hyperbolique. Rappelons
qu’un lacet ¥ : 8! — F de classe C' contenu dans une feuille d’un feuilletage algébrique
complexe F sur P? est dit d’holonomie hyperbolique si la dérivée de I'application d’ho-
lonomie associée a y est un nombre complexe de module différent de 1.

Lemme 11.2. — Etant donné un lacet d’holonomie hyperbolique y dans une feuille d’un feuille-
tage transversalement holomorphe de codimension complexe un, il existe une section transverse torique dans
un voisinage arbitrairement petit autour de y .

Démonstration. — Quitte a considérer une sous-variété de dimension 3 transverse
au feuilletage et contenant y, on peut supposer que la variété M est de dimension réelle 3,
et que le feuilletage est de dimension réelle 1 et transversalement holomorphe. Il est donc
défini par un champ de vecteurs X non singulier, au moins dans un voisinage suffisam-
ment petit de y. Quitte & changer I'orientation de ce dernier, on peut supposer également
que ’holonomie de y dans le sens défini par X est contractante. Dans ce cas, il est bien
connu qu’il existe une métrique adaptée gy sur le fibré normal NR®F de F qui est stricte-
ment contractée par le flot induit par X en tout temps strictement positif. En considérant
une métrique sur M qui induit la métrique gy sur NRF, pour & > 0 suffisamment petit,
la surface constituée des points a distance ¢ de y est transverse a F. U
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11.2. Caractéristique d’Euler. — Notons que Hy(P?, Z) est cyclique infini engendré
par la classe d’homologie d’une droite projective complexe P! : ainsi, pour toute section
transverse Z compacte, il existe un entier dz tel que la classe d’homologie [Z] de Z soit
[Z] = d;[P"]. Cet entier est appelé le degré de Z.

Lemme 11.3. — Etant donné un feuilletage algébrique complexe JF de degré d de P, toute
section transverse compacte 7. est de degré d; = 0 ou dy =1 — d. St Z. a une composante connexe de
d(d+1)

caractéristuque d’Euler non nulle, alors celle-cu est unique et de genre =5

Démonstration. — Cela résulte des isomorphismes naturels

TRZ~(N*F), et NRZx=(TRF)

1z’
ce qui donne, étant donné que dans la partie réguliere on a NRF >~ NF et TRF ~ TF
x(Z)=[NF]-[Z2] et [ZP=[TF]-[Z].

Dans ces formules, x est la caractéristique d’Euler, les crochets désignent les classes de
Chern des fibrés en droites complexes correspondant et on note - le produit d’intersec-
tion, ou la dualité selon le point de vue. Comme NF = O(d +2) et TF = O(1 — d) pour
un feuilletage de degré 4, on obtient les formules

XZ)=(d+2)d, et do=(1—d)dy.

On a donc dz =0 ou dy = 1 — d. Par ailleurs, ces formules montrent qu une composante
connexe de Z de caractéristique d’Euler non nulle a un degré non nul. Puisque la forme
d’intersection sur Hy(P?, Z) est non dégénérée, une telle composante est unique. 0J

Le degré d’une courbe de P? étant strictement positif, une section transverse com-
pacte n’est donc jamais une courbe algébrique de P?, sauf si le degré du feuilletage est
nul.

Certains feuilletages algébriques complexes de P? ne possédent pas de section
transverse compacte : c’est par exemple le cas des pinceaux de Lefschetz (autres que les
pinceaux de droites). En effet, si pour un tel pinceau f : P? --» P! il existait une section
transverse Z, la restriction de f a Z serait un revétement de Z sur P', ce qui montrerait
que Z est une union disjointe de sphéres et contredirait le lemme 11.3.

Pour d’autres feuilletages algébriques complexes du plan projectif; il existe des sec-
tions transverses toriques mais pas de section transverse de caractéristique d’Euler non
nulle : c’est par exemple le cas des feuilletages qui admettent une courbe algébrique in-
variante et qui ont quelque part un lacet d’holonomie hyperbolique.

Lemme 11.4. — Sout F un feuilletage algébrique de degré d > 1 du plan projectif complexe
ayant une courbe algébrique imvariante A. Alors toute section transverse compacte de F est un lore qui ne
rencontre pas A.
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Démonstration. — Soit Z une section transverse de F. Comme les indices d’inter-
section d’une section transverse avec une feuille sont égaux a l,ona dy - dz =[A] - [Z] =
IANZ|. Le degré d’une courbe algébrique étant strictement positif, on en déduit que dz,
est positif ou nul, et est nul si et seulement si A n’intersecte pas Z. Or nous avons vu que
la caractéristique d’Euler d’une section transverse est soit nulle soit strictement négative
et que, dans ce dernier cas, son degré est strictement négatif (voir la démonstration du
lemme 11.3). U

Un probléme intéressant serait d’étudier les feuilletages algébriques de P? admet-
tant une section transverse compacte de caractéristique d’Euler non nulle : il nous semble
plausible qu’une condition nécessaire et suffisante soit I’absence d’une courbe algébrique
mvariante (le lemme 11.4 montre qu’il s’agit d’une condition nécessaire).

11.3. Connexité.

Proposition 11.5. — Soit F un feuilletage algébrique complexe de P* de degré d > 2 satisfai-
sant les propriétés Py et Ps. Alors la section transverse B_formée par Uensemble des points critiques de W

le long des feuilles régulieres de F est une surface de Riemann compacte connexe de genre @ et de
degré 1 —d.

Démonstration. — On déduit des propriétés Pp et Ps que le champ W est la par-
tie réelle d’une section lisse du fibré tangent a F qui s’annule exactement sur B et, de
plus, transversalement. Comme les singularités de W le long des feuilles sont des puits,
'orientation de B induite en tant que section transverse a JF coincide avec 'orientation
en tant qu’intersection des graphes de la section nulle et de la section lisse ci-dessus dans
I'espace total du fibré tangent a . Par conséquent, la classe d’homologie de B est celle
de TF >~ O(1 — d); son degré est donc 1 — d # 0.

D’apres le lemme 11.3, 1l suffit d’établir que B n’a pas de composante connexe de
genre 1. Supposons que ce soit le cas et notons C C B une telle composante ; C est alors
une courbe elliptique. Le saturé de C par F est un ouvert que ’on notera D¢.

Lemme 11.6. — 1l existe une section transverse tonique I qui intersecte a la_fois D¢ et Dy.

Démonstration. — La frontiere D¢ de D¢ est saturée par les feuilles de F et n’est
pas contenue dans ’ensemble singulier de F. En effet, si tel était le cas, D¢ étant
connexe, il serait réduit a une singularité s de F. Il en résulterait que les deux sépara-
trices de s seraient contenues dans D¢. Ces derniéres seraient alors simplement connexes
d’apres le théoreme 5.1 donc des courbes rationnelles passant par la singularité. Or le
feuilletage ne peut posséder de courbe algébrique invariante puisqu’il admet une section
transverse de caractéristique d’Euler non nulle (lemme 11.4).

Considérons alors I'unique ensemble pseudo-minimal M C P? contenu dans dDc..
Il s’agit d’un ensemble fermé, saturé par le feuilletage, non réduit a un sous-ensemble de
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singularités et minimal pour ces propriétés. En particulier, toute feuille F de F contenue
dans M est dense dans M. Un tel ensemble existe, il suffit de considérer un ensemble
minimal pour la restriction du feuilletage a P? \ Int(Us) qui est contenu dans dD¢ (ce
dernier intersecte le complémentaire de Us car il est saturé par F et n’est pas contenu
dans ensemble singulier) puis de saturer ’ensemble obtenu par /. Comme M n’est pas
réduit a une courbe algébrique invariante, un point régulier de M n’est jamais transver-
salement isol¢ dans M. L'unicité résulte du fait que le complémentaire d’un ensemble
pseudo-minimal est un ouvert de Stein [25] mais nous n’utiliserons pas ce point.

Dans le cas ot M contient une singularité¢ s de S, la section transverse torique
construite au lemme 11.1 convient. En effet, puisque M ne contient pas de point trans-
versalement isolé dans sa partie réguliére, I'intersection de M avec une petite boule autour
de s ne peut étre réduit aux deux séparatrices de F en s, et donc intersecte T'. Aussi, I'ou-
vert D¢ accumule sur s et, en particulier, intersecte 'T'. Comme M et D¢ sont disjoints,
cela prouve bien que T intersecte a la fois D¢ et Dy..

Supposons maintenant que M ne contient aucune singularité de F. Dans ce cas,
un théoréme de Bonatti, Langevin et Moussu [4] (voir également [10] ainsi que le théo-
réme 9.5 qui offrent des démonstrations alternatives) montre qu’il existe un lacet d’holo-
nomie hyperbolique ¥ contenu dans M. Dans ce cas, la section transverse torique associée
a y,dontla construction est expliquée au lemme 11.2, convient. En effet, T intersecte D¢,
puisque D¢ est ouvert et accumule sur y. De plus, T intersecte M, donc D¢ puisque y
n’est pas transversalement isolé dans M. UJ

Nous sommes maintenant en mesure d’achever la démonstration de la proposi-
tion 11.5. Soit T la section transverse torique construite au lemme 11.6 et soit U 'ouvert
de T défini par U :=T N D¢. Ce dernier est un ouvert non vide strict de T. Considé-
rons I'application P : D¢ — C qui, a un point de D¢, associe 'unique point de C situé
dans la méme feuille de F. Cette application est bien définie en vertu du théoréme 5.1 et
sa restriction a toute section transverse est un biholomorphisme local. La restriction Py
de P a U est donc un biholomorphisme local. Or la norme de la dérivée de Py (mesu-
rée vis-a-vis de la métrique hermitienne gy construite dans le parapraphe 6.2) tend vers
I'infini lorsqu’elle est évaluée en un point qui tend vers dU. Cela découle du corollaire
6.3. En parallélisant les courbes elliptiques T et C, la dérivée de Py définit une fonction
holomorphe P{; : U — C* dont la norme tend vers +00 lorsque 'on tend vers dU. Or
ceci est impossible en vertu du principe du maximum appliqué a la fonction 1/P;. U

Remarque 11.7. — On peut vérifier que la proposition 11.5 est également vraie
en degré 1. Par ailleurs, comme conséquence du lemme 11.4 et de la proposition 11.5,
on obtient une deuxiéme démonstration qu’un feuilletage algébrique complexe de P? de
degré d > 2 satisfaisant les propriétés Py et Ps n’a pas de courbe algébrique invariante
(voir également corollaire 9.6).
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12. Démonstration du théoréme principal

Nous allons déduire la stabilité structurelle du feuilletage de Jouanolou J; en mon-
trant qu’il satisfait les propriétés Ps et Pp (théoréme 10.1) puis nous allons montrer que B
est biholomorphe a la quartique de Klein.

12.1. Le groupe de symétrie de J>. — Le groupe Aut(J;) est le groupe des transfor-
mations projectives qui préservent Jo. Il a été calculé par Jouanolou dans [17] : il s’agit
du groupe engendré par les transformations

(12.1) s=Drzia] et t=[tx:%:0]

ou ¢ est une racine 7-iéme primitive de I'unité. La structure algébrique du groupe
Aut(Jy) peut étre complétement décrite par les relations entre s et ¢ : toutes se déduisent
des trois relations suivantes

On en déduit que Aut(J,) se reléve a un sous-groupe du groupe unitaire U(3) C
GL(3, C), via le morphisme

(12.2) m: Aut(Jy) — U(3)
qui a s associe m(s) = (, z, x) et a ¢ associe m(¢) = (¢x, £2p, £*2).

Lemme 12.1. — Le groupe Aut(Jy) préserve le champ W et la courbe mixte B.

Démonstration. — Cela est di au fait que les transformations m(s) et m(¢) préservent
la classe projective du champ de Jouanolou J, ainsi que la forme hermitienne standard
sur C* et par suite la fonction f(p) := —log [||*. [

12.2. La propriété Ps.
Lemme 12.2. — Le fawlletage de Jouanolou Jo vérifie la propriété Ps.
Démonstration. — Le point [1 : 1 : 1] est une singularité de J, en laquelle Jo(p) = p.

Dans la carte affine {z # 0}, en notant u, v les coordonnées définies par x = uz et y = vz,
le feuilletage est donné par le champ de vecteurs

5 0 0
X=—u')—+ (1 —uv)—
@) i
dont les valeurs propres sont Ay = —2 = iv/3. Elles sont linéairement indépendantes

sur R et ont chacune une partie réelle strictement négative. Ainsi la singularité [1: 1 : 1]
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est hyperbolique et, d’apres le lemme 4.9 et sa démonstration, le champ W est égal a
%QER(X) a l'ordre 1. En particulier, [1 : 1 : 1] est une source pour W. Le lemme 12.1
nous permet de déduire que les autres singularités de J, sont également des sources
pour W. 0J

12.3. La propriété Py.
Proposition 12.3. — La courbe mixte B (corollaire (4.4)) d’équation
(12.3) 0T+ =0
est transverse a Jy. De plus, le fewlletage de Jouanolou Jy vérifie la propriété Py, ¢’est-a-dire
[x:y:z1€ B = 2|+ + 20| < Ixl* + Dl + |2/".

Le probléme étant invariant par la symétrie s donnée par (12.1), on peut supposer z
de module maximal. Il suffit dans ce cas de démontrer I'inégalité ci-dessus en tout point
(x, 7, 2) satisfaisant I'équation x)* + yz* + zx* = 0 et vérifiant |z| # 0, ainsi que les deux
mégalités |x| < |z| et || < |z|. Posons alors u = x/z et v = y/z et considérons les deux
fonctions

_ - w + vu’ + w?®
Fu,v)=u’ +v+#> e Guv)=—m—m8——.
(wv) (@ v) lul* + [v]* + 1

En notant D le disque unité de G, la proposition 12.3 suit du lemme suivant.
Lemme 12.4. — Pour tout p de D x D, 51 F(p) = 0 alors |G(p)| < 1/2.

Nous allons a présent voir comment ramener le lemme 12.4 a la vérification d’un
nombre fini d’inéquations sur les entiers.

Pour tout entier naturel N non nul, on désigne par I'y = %Z[i], ou Z[:] est I'an-
neau des entiers de Gauss et par Dy = pxD le disque de rayon py =1 + § On note
également

Cr(N) = sup [|dF]| et Cg(N)= sup [dG]
DnxDn DN xDy
les bornes supérieures sur le bi-disque Dy X Dy (muni de sa structure hermitienne stan-
dard) des normes d’opérateurs des différentielles dF et dG. On définit enfin I’ensemble

(12.4) EN:{(U V) e Z[i? ; {IUI_§N+1 et [VI<N+1 }

[UV2 + N2V 4+ NU?| < N2Cp(N)
et la condition Cy

. - 1 Cg(N
(12.5) vQ € Ex, N|NUV+VU2+UV2\<(-_£

5 N )(|U|4 + V[*+N*).
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Lemme 12.5. — S7 exuste un entier naturel N non nul tel que la condition Cy sout satisfaile,
alors le lemme 12.4 est également satisfait.

Démonstration. — Soit N un entier naturel non nul tel que la condition Cy soit
satisfaite. Tout nombre complexe w est a une distance inférieure ou égale a 1/ /2N de 'y
puisque Nw est a distance au plus de 1/+4/2 d’un entier de Gauss. Soit p = (z, v) un point
de D x D tel que F(p) =0 et ¢ un point de I'xy X I'y dont chacune des coordonnées est a
une distance inférieure ou égale a 1/\/§N de celles de p. On a donc ||p — ¢lls < 1/N et,
d’apres le théoréme des accroissements finis,

Cr(N)
N

[F(p)| = [F(9) - Fp)| <
En notant Q = N¢ = (U, V) € Z[i]?, 'inégalité précédente se réécrit
UV + N*V + NU?| < N’Cp(N).

Le point Q) appartient donc a Ey puisque, d’aprés I'inégalité triangulaire, |U]| et |V] sont
inférieurs ou égaux a N+ 1/ \/5, donc a N 4 1. On déduit alors de la condition Cx que
Ce(N)

N

1
G(p)] < 5 -
2
et, toujours d’apres le théoreme des accroissements finis,

Cea
o) _ 1 s
N 2

G| < |G| +

Nous allons a présent donner des estimations des constantes Cp(IN) et C¢ (IN). Pour
cela, en tout point (u, v) du bi-disque Dy X Dy;, la différentielle de I est donnée par

dF(x, v) = v*du + 2udz + dv + 2uvdv,
ce qui fournit I’estimation suivante
AP, v)| < 33 (Idul + Idv]) < 3p3v/2/[duf? + [doP?,

d’ott finalement Cp(N) < 34/2p%. Notons P et Q respectivement le numérateur et le
dénominateur de la fonction G = P/Q; on a alors dG = & — M2 [ eq différentielles

, Q@
de P et Q sont données par

dP(u, v) = (v* + 2uv)du + vdu + (2 + 2uv)dv + ¥*dv
dQ(u, v) = 2ui’du + 20’ udu + 2vv*dv + 2v*vdv,
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d’ou les estimations
|dP(u, v)| < 4027/2/Idul” + [dv]?

|dQ(u, v)| < 4p3v/2y/|dul? + |dv|2.

On en déduit alors
|dG (4, v)| < 4v/2p2 +12v/2p% et done  Co(N) < 4+/2p%(1 4 3p).

Dans une derniere étape, nous allons ramener la démonstration du lemme 12.4,
et par suite celle de la proposition 12.3, a des calculs uniguement sur des entiers naturels.
Pour cela, nous définissons I’ensemble

[UZ<(N+1D? et [V2<(N+1)? }

_ 12 . _ —
<12.6) EN — {(Uav) € Z[l] ’ {lUVQ +NQV+NU2|2 < 18(N+ 1)4

et la condition
(12.7) Cy =VQ € Ey, 10N?[NUV + VU? + UV?[* < (JUI* + [V[* + N*).

Lemme 12.6. — S existe un entier naturel N > 54 tel que la condition G soit satisfaite,
alors la condition G est également satisfaite.

Démonstration. — Soit N un entier naturel non nul tel que la condition Cy soit
satisfaite. Soit ) = (U, V) un élément de 'ensemble Ey. Nous avons calculé, a la suite de
la démonstration du lemme 12.5, la majoration Cp(IN) < 3\/5,01% de laquelle on déduit
que (N*Cp(N))? < 18(N + 1)*, et finalement que Q appartient a Pensemble Ey. On
déduit alors de la condition Cy que

INUV 4+ VU + UV?| < L(N”f +[U[" 4+ [V[Y).
v 10N
En utilisant a présent la majoration C(IN) <6 ,01%(1 + 3p%) calculée précédemment et le
fait que le membre de droite de cette inégalité est une fonction décroissante de N tendant
vers 24, on laisse au lecteur le soin de vérifier que

L1 GV

/10N — 2 N

des lors que N est au moins égal a 54, ce qui termine la démonstration. 0J

Lemme 12.7. — La condition Gy est vérifiée.

Démonstration. — La démonstration du lemme se réduit a vérifier un ensemble fini
d’inégalités sur les entiers naturels. 0J
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Pour conclure cette section, nous indiquons quelques données numériques a pro-
pos de la condition C4; et de la condition G5y que nous avons également vérifiée. Rap-
pelons qu’il s’agit d’'un ensemble d’inégalités de la forme (U, V) <« (U, V).

Condition C,; :

— nombres d’inégalités a vérifier = 3 329 227

— maxg,,; {t(U, V)} = 371 887 603 636 416 250 (< 2°7)

— maxg,, {k (U, V)} = 1815000 825 762 712 225 (< 2°!)

— ming,,, {« (U, V) — (U, V)} =22 039 448 963 015 524 (< 2*)

— maxg,, {{g3 ) = 0.935442548319427

Les inégalités étant indépendantes les unes des autres, il est possible de distribuer le calcul
et effectuer les vérifications en quelques dizaines de secondes.

Condition C 5, :

— nombres d’inégalités a vérifier = 3 558 612

— maxg,,, {t(U, V)} =486 516 872 673 000 000 (< 2°%)

— maxg,,, {k (U, V)} =2 385 954 719 278 502 464 (< 2°%)

— ming,,, {k (U, V) — (U, V)} =29 998 373 501 278 096 (< 2°°)

— maxg,,, { {50 = 0.932602375568296

Remarque. — Notons que tous les entiers naturels en jeu ici sont strictement in-
férieurs a 2°* et qu’il est donc possible d’implémenter un algorithme de vérification de
ces inégalités sur une architecture informatique classique de 64 bits dans un langage de
programmation standard. En particulier, le recours a des langages de programmation
permettant d’écrire des programmes manipulant de « grands entiers » n’est pas néces-
saire 1icl.

12.4. La section transverse B est bitholomorphe a la quartique de Klein.

Proposition 12.8. — Toute surface de Riemann de genre 3 qui contient une copie de Aut(J5)
dans son groupe d’automorphismes est biholomorphe a la quartique de Klein

(12.8) 0+ + 2 =0.

Démonstration. — Notons C une telle surface de Riemann et soit 7 : Aut(J,) —
Aut(C) un morphisme injectif. Soit L = Q'(C)* et ¢ : C — P(L)) I'application canonique
qui, a un point p € C, associe la classe projective de I’évaluation d’une 1-forme holo-
morphe en un vecteur tangent non nul en p. Cette application est équivariante vis-a-vis
d’une représentation linéaire p : Aut(C) — GL(L).

Lemme 12.9. — p est injective.
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Démonstration. — 11 est bien connu que ¢ est un plongement si C n’est pas hyper-
elliptique et un revétement ramifié double sur une conique de P(L) si c’est une courbe
hyperelliptique ([1]). En particulier, étant donné que le groupe Aut(J>) ne posséde aucun
élément d’ordre 2, la représentation linéaire o est injective. UJ

Lemme 12.10. — p est comjuguée a la représentation y o m on y est Uautomorphisme de
GL(3, Q) wduit par un automorphisme de Galots.

Démonstration. — L relation sts™' = ¢ montre que Papplication p (s™!) permute les
espaces propres de p(f) en envoyant Ker(p(¢) — ) sur Ker(po(£) —A?). Ainsi, le spectre de
p(#) est formé de trois valeurs propres distinctes de la forme A, A%, A* pour une certaine
racine 7-itme de I'unité A. Dans certaines coordonnées de L, on a donc

p()=0,zx) etp(t)= (Ax, A%y, )fiz).

Ainsi p est conjugué a la représentation induite par 'automorphisme de Galois qui en-
voie ¢ sur A. O

Lemme 12.11. — Dans certaines coordonnées sur L, les équations quartiques projectivement
tnvariantes par le groupe p o 1(Aut(Jy)) sont données par

(12.9) 0’ +97 + 28 =0,

Démonstration. — A cause du lemme 12.10, il suffit de montrer que les équations
quartiques projectivement invariantes par le groupe m(Aut(J;)) sont a multiplication
par une constante pres de la forme

(12.10) '+ i’ =0

ou 1 est une racine cubique primitive de I'unité. En effet, elles sont toutes équivalentes a
(12.9) par la transformation linéaire (x, 7y, n°2).

Soit P € C[x,», z] un polynéme non nul homogene de degré 4 projectivement
invariant par le groupe m(Aut(Js)), c’est-a-dire que P o m(g) = u(g)P pour un certain
morphisme u : Aut(J5) — C*. Comme ¢ appartient au groupe dérivé de Aut(J,), on a
u(t) = 1. Décomposons le polynéme P en une combinaison linéaire de monoémes P =
D wpiy Py s, 4P 27, ot a, B, y décrivent toutes les partitions de quatre. Comme P o
m(t) = P, on déduit que P, 5, = 0 dés que o + 28 + 4y n’est pas un multiple de 7.
De plus, comme P o m(s) = u(s)P avec u(s) # 0, on déduit que I'annulation de P, g, est
invariante par permutation cyclique de «, B8, y. Ces deux observations montrent que
les seuls monomes apparaissant dans la décomposition de P sont associés aux partitions
(o, B,y) €{(1,3,0), (0,1, 3), (3,0, 1)}, donc P est projectivement équivalent a (12.10)
avec ¢ = u(s). [
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Nous sommes maintenant en mesure de terminer la démonstration de la propo-
sition 12.8. En effet, I'image de C par I’application canonique est une courbe (comptée
avec multiplicité) de degré 4 dont I’équation quartique est projectivement invariante par
p o 1(Aut(J)). Dans certaines coordonnées, cette équation est (12.9) d’aprés le lemme
12.11, ce qui montre que ¢(C) est la quartique de Klein (12.8) et que ¢ induit un biholo-
morphisme entre C et cette derniére. U

Corollarre 12.12. — Le quotient de Uensemble de Fatou ¥ (Js) par T est biholomorphe a la
quartique de Klewn.

Démonstration. — Cie quotient est biholomorphe a la courbe mixte B d’équation
(12.3) munie de la structure complexe induite par J;. Comme B est une surface ana-
lytique réelle lisse non vide et non holomorphe, elle est Zariski dense sur C dans P? et
par suite le groupe Aut(Jy) agit fidélement sur B. Son action sur B étant holomorphe, le

corollaire est une conséquence de la proposition 12.8.
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FIGURE 2. — Maximum de R, sur la surface B, en fonction de p
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Ficure 3. — Intersection de ’ensemble de Julia du feuilletage de Jouanolou de degré d avec une sphére entourant une
singularité
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13. Expérimentations numériques et images

13.1. Stabilité structurelle en degré d > 2. — Par un calcul analogue a celui détaillé
dans le lemme 12.2, on démontre que le feuilletage de Jouanolou de degré d > 2 vérifie
la propriété Ps. Quant a la propriété Pg, les choses sont plus délicates puisque celle-ci
dépend du choix d’une fonction mesurant la distance infinitésimale entre les feuilles. La
fonction —log|| - || ne convient pas pour ¢ > 3 mais nous avons pu vérifier numérique-
ment pour les degrés 3 < d <5 que d’autres fonctions conviennent, en 'occurrence les
fonctions —log || - ||, pour des p bien choisis dépendant de d. Plus précisément, les dessins
de la figure 2 montrent que, pour 2 < d <5, il existe un intervalle de normes ¢ pour
lesquelles I'inégalité de transversalité est satisfaite. Sur chaque dessin de la figure 2, on

lit en abscisse la valeur de p et en ordonnée le maximum sur la surface B, (analogue de

a2l 2.2
I’équation (4.4) pour la fonction —log || - [|,) du rapport R, = |% |/ dalja‘-llﬁ.

monstration du lemme 4.6, la propriété Py est donc satisfaite pour la fonction —log]|| - ||,

D’apres la dé-

si et seulement si ce rapport R, est strictement inférieur a 1.

La proposition (12.3) donne une démonstration formelle de la propriété Py pour
le couple degré-norme (d =2, p = 2) et, par ailleurs, on constate numériquement qu’en
plus de (d =2,p=2), les couples (d =3,p=3), d=4,p=4) et (d=5,p=0D5)
conviennent aussi. Ce sont ces expérimentations numériques qui nous permettent de
conjecturer la stabilité structurelle du feuilletage de Jouanolou en degré d > 2.

13.2. Ensemble de fulia transversalement Cantor. — Les dessins de la figure 3 montrent
I'intersection de ’ensemble de Julia du feuilletage de Jouanolou de degré 2 < d <5 avec
une sphere bordant le voisinage de 'une des singularités et invariante par la symétrie s
d’ordre 3 (éq. (12.1)). Nous avons produit des dessins analogues jusqu’en degré d =9
(ainsi que des visualisations en 3D pour en apprécier plus finement les détails). Ce sont ces
images et d’autres travaux en cours qui nous permettent de conjecturer que I’ensemble
de Julia est transversalement un ensemble de Cantor en tout degré d > 2.
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