In this paper, we prove that separation occurs for the stationary Prandtl equation, in the case of adverse pressure gradient, for a large class of boundary data at . We justify the Goldstein singularity: more precisely, we prove that under suitable assumptions on the boundary data at , there exists such that as for some positive constant , where is the solution of the stationary Prandtl equation in the domain . Our proof relies on three main ingredients: the computation of a “stable” approximate solution, using modulation theory arguments; a new formulation of the Prandtl equation, for which we derive energy estimates, relying heavily on the structure of the equation; and maximum principle and comparison principle techniques to handle some of the nonlinear terms.
@article{PMIHES_2019__130__187_0,
author = {Dalibard, Anne-Laure and Masmoudi, Nader},
title = {Separation for the stationary {Prandtl} equation},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {187--297},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {130},
doi = {10.1007/s10240-019-00110-z},
mrnumber = {4028516},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-019-00110-z/}
}
TY - JOUR AU - Dalibard, Anne-Laure AU - Masmoudi, Nader TI - Separation for the stationary Prandtl equation JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 187 EP - 297 VL - 130 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-019-00110-z/ DO - 10.1007/s10240-019-00110-z LA - en ID - PMIHES_2019__130__187_0 ER -
%0 Journal Article %A Dalibard, Anne-Laure %A Masmoudi, Nader %T Separation for the stationary Prandtl equation %J Publications Mathématiques de l'IHÉS %D 2019 %P 187-297 %V 130 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-019-00110-z/ %R 10.1007/s10240-019-00110-z %G en %F PMIHES_2019__130__187_0
Dalibard, Anne-Laure; Masmoudi, Nader. Separation for the stationary Prandtl equation. Publications Mathématiques de l'IHÉS, Tome 130 (2019), pp. 187-297. doi: 10.1007/s10240-019-00110-z
[1.] Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl., Volume 40 (1972), pp. 769-790 | MR | Zbl | DOI
[2.] Concerning the -inviscid limit for flows under a slip boundary condition, J. Math. Fluid Mech., Volume 13 (2011), pp. 117-135 | MR | Zbl | DOI
[3.] On the vanishing viscosity limit for the incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, Volume 11 (1998), pp. 1625-1636 | MR | Zbl | DOI
[4.] C. Cortazar, M. del Pino and M. Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat equation, | arXiv
[5.] Bubbling blow-up in critical parabolic problems, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, 2186, Springer, Cham, 2017, pp. 73-116 (MR 3588122) | MR | DOI
[6.] M. del Pino, M. Musso and J. Wei, Type II blow-up in the -dimensional energy critical heat equation, | arXiv | MR
[7.] Sobolev stability of Prandtl expansions for the steady Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 233 (2019), pp. 1319-1382 | MR | DOI
[8.] Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015), pp. 1273-1325 | MR | Numdam | DOI
[9.] On laminar boundary-layer flow near a position of separation, Q. J. Mech. Appl. Math., Volume 1 (1948), pp. 43-69 | MR | Zbl | DOI
[10.] On the nonlinear instability of Euler and Prandtl equations, Commun. Pure Appl. Math., Volume 53 (2000), pp. 1067-1091 | MR | Zbl | DOI
[11.] Y. Guo and S. Iyer, Validity of steady Prandtl layer expansions, | arXiv
[12.] Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate, Ann. PDE, Volume 3 (2017), p. 10 | MR | DOI
[13.] Explosion de solutions d’équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci., Sér. 1 Math., Volume 319 (1994), pp. 141-145 | Zbl | MR
[14.] Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 145-175 | MR | Zbl | DOI
[15.] S. Iyer, Global Steady Prandtl expansion over a moving boundary, | arXiv
[16.] Steady Prandtl Boundary Layer Expansions Over a Rotating Disk, Archive for Rational Mechanics and Analysis, Volume 224 (2017), pp. 421-469 | MR | DOI
[17.] S. Iyer, Steady Prandtl layers over a moving boundary: non-shear Euler flows, | arXiv | MR
[18.] Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on Nonlinear Partial Differential Equations, Volume 2 (1984), pp. 85-98 | MR | Zbl | DOI
[19.] Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., Volume 38 (2006), pp. 210-232 | MR | Zbl | DOI
[20.] Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Physica D, Volume 240 (2011), pp. 619-628 | MR | Zbl | DOI
[21.] On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., Volume 11 (2013), pp. 269-292 | MR | Zbl | DOI
[22.] On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., Volume 46 (2014), pp. 3865-3890 | MR | DOI
[23.] The van Dommelen and Shen singularity in the Prandtl equations, Adv. Math., Volume 307 (2017), pp. 288-311 | MR | DOI
[24.] Fluid Mechanics, 6, Pergamon/Addison-Wesley, London-Paris-Frankfurt/Reading, 1959 (translated from the Russian by Sykes, J.B. and Reid, W.H.) | MR | Zbl
[25.] Well-posedness of the boundary layer equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 987-1004 | MR | Zbl | DOI
[26.] The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary, Arch. Ration. Mech. Anal., Volume 142 (1998), pp. 375-394 | MR | Zbl | DOI
[27.] About the Hardy inequality, An Invitation to Mathematics, Springer, Berlin, 2011, pp. 165-180 | DOI
[28.] Uniform regularity for the Navier-Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., Volume 203 (2012), pp. 529-575 | MR | Zbl | DOI
[29.] Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 223 (2017), pp. 301-417 | MR | DOI
[30.] Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Commun. Pure Appl. Math., Volume 68 (2015), pp. 1683-1741 | MR | DOI
[31.] On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. Math., Volume 156 (2004), pp. 565-672 | MR | Zbl | DOI
[32.] The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math. (2), Volume 161 (2005), pp. 157-222 | MR | Zbl | DOI
[33.] Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., Volume 193 (2013), pp. 249-365 | MR | Zbl | DOI
[34.] Type II blow up for the energy supercritical NLS, Camb. J. Math., Volume 3 (2015), pp. 439-617 | MR | DOI
[35.] Mathematical Models in Boundary Layer Theory, 15, Chapman & Hall/CRC, Boca Raton, 1999 | Zbl | MR
[36.] Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen des III. Internationalen Mathematiker-Kongresses (1905), pp. 484-491 | JFM
[37.] Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., Volume 192 (1998), pp. 433-461 | MR | Zbl | DOI
[38.] Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Commun. Math. Phys., Volume 192 (1998), pp. 463-491 | MR | Zbl | DOI
[39.] On Goldstein’s theory of laminar separation, Q. J. Mech. Appl. Math., Volume 11 (1958), pp. 399-410 | MR | Zbl | DOI
[40.] Self-focusing and wave collapse, The Nonlinear Schrödinger Equation, 139, Springer, New York, 1999 | Zbl | MR
[41.] Y.-G. Wang and S.-Y. Zhu, Separation of the two-dimensional unsteady Prandtl boundary layers under adverse pressure gradient, | arXiv
[42.] Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. Engl. Ser., Volume 16 (2000), pp. 207-218 | MR | Zbl | DOI
[43.] Blowup of solutions of the unsteady Prandtl’s equation, Commun. Pure Appl. Math., Volume 50 (1997), pp. 1287-1293 | MR | Zbl | DOI
[44.] Viscous boundary layers and their stability. I, J. Partial Differ. Equ., Volume 11 (1998), pp. 97-124 | MR | Zbl
[45.] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz., Volume 61 (1971), pp. 118-134 | MR
Cité par Sources :





