In mixed characteristic and in equal characteristic we define a filtration on topological Hochschild homology and its variants. This filtration is an analogue of the filtration of algebraic -theory by motivic cohomology. Its graded pieces are related in mixed characteristic to the complex constructed in our previous work, and in equal characteristic to crystalline cohomology. Our construction of the filtration on is via flat descent to semiperfectoid rings.
As one application, we refine the construction of the -complex by giving a cohomological construction of Breuil–Kisin modules for proper smooth formal schemes over , where is a discretely valued extension of with perfect residue field. As another application, we define syntomic sheaves for all on a large class of -algebras, and identify them in terms of -adic nearby cycles in mixed characteristic, and in terms of logarithmic de Rham-Witt sheaves in equal characteristic .
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-019-00106-9
Bhatt, Bhargav 1 ; Morrow, Matthew  ; Scholze, Peter 
@article{PMIHES_2019__129__199_0,
author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter},
title = {Topological {Hochschild} homology and integral $p$-adic {Hodge} theory},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {199--310},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {129},
doi = {10.1007/s10240-019-00106-9},
mrnumber = {3949030},
zbl = {1478.14039},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-019-00106-9/}
}
TY - JOUR AU - Bhatt, Bhargav AU - Morrow, Matthew AU - Scholze, Peter TI - Topological Hochschild homology and integral $p$-adic Hodge theory JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 199 EP - 310 VL - 129 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-019-00106-9/ DO - 10.1007/s10240-019-00106-9 LA - en ID - PMIHES_2019__129__199_0 ER -
%0 Journal Article %A Bhatt, Bhargav %A Morrow, Matthew %A Scholze, Peter %T Topological Hochschild homology and integral $p$-adic Hodge theory %J Publications Mathématiques de l'IHÉS %D 2019 %P 199-310 %V 129 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-019-00106-9/ %R 10.1007/s10240-019-00106-9 %G en %F PMIHES_2019__129__199_0
Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Topological Hochschild homology and integral $p$-adic Hodge theory. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 199-310. doi: 10.1007/s10240-019-00106-9
[Ant18] B. Antieau, Periodic cyclic homology and derived de Rham cohomology, | arXiv
[Avr99] Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology, Ann. Math. (2), Volume 150 (1999), pp. 455-487 | MR | DOI | Zbl
[BBD82] Faisceaux pervers, Analysis and topology on singular spaces, I, Volume 100 (1982), pp. 5-171 | MR | Zbl
[Bei87] On the derived category of perverse sheaves, -theory, arithmetic and geometry, Volume 1289 (1987), pp. 27-41 | MR | Zbl | DOI
[Ber74] Cohomologie cristalline des schémas de caractéristique , 407, Springer, Berlin, 1974 | Zbl | MR
[Bha12a] B. Bhatt, Completions and derived de Rham cohomology, 2012, | arXiv
[Bha12b] B. Bhatt, -adic derived de Rham cohomology, 2012, | arXiv
[BHM93] The cyclotomic trace and algebraic -theory of spaces, Invent. Math., Volume 111 (1993), pp. 465-539 | MR | DOI | Zbl
[BMS18] Integral -adic Hodge theory, Publ. Math. Inst. Hautes Études Sci., Volume 128 (2018), pp. 219-397 (MR 3905467) | MR | Zbl | DOI
[Bök85a] M. Bökstedt, Topological Hochschild homology, Bielefeld preprint, 1985.
[Bök85b] M. Bökstedt, Topological Hochschild homology of and , Bielefeld preprint, 1985.
[Bre00] Groupes -divisibles, groupes finis et modules filtrés, Ann. Math. (2), Volume 152 (2000), pp. 489-549 | MR | DOI | Zbl
[BS] B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation.
[BS15] The pro-étale topology for schemes, Astérisque, Volume 369 (2015), pp. 99-201 | Zbl | MR
[BS17] Projectivity of the Witt vector affine Grassmannian, Invent. Math., Volume 209 (2017), pp. 329-423 | MR | DOI | Zbl
[CL19] Breuil-Kisin modules via crystalline cohomology, Trans. Am. Math. Soc., Volume 371 (2019), pp. 1199-1230 (MR 3885176) | MR | Zbl
[CMM18] D. Clausen, A. Mathew and M. Morrow, -theory and topological cyclic homology of Henselian pairs, | arXiv
[CN17] Syntomic complexes and -adic nearby cycles, Invent. Math., Volume 208 (2017), pp. 1-108 | MR | DOI | Zbl
[Del71] Théorie de Hodge. II, Publ. Math. IHÉS, Volume 40 (1971), pp. 5-57 (MR 0498551) | Zbl | MR | Numdam | DOI
[Dri18] V. Drinfeld, A Stacky approach to crystals, 2018, | arXiv
[FF18] Courbes et fibrés vectoriels en théorie de Hodge -adique, 406, Société Mathématique de France (SMF), Paris, 2018 (French) | Zbl | MR
[FJ13] J.-M. Fontaine and U. Jannsen, Frobenius gauges and a new theory of -torsion sheaves in characteristic . I, 2013, | arXiv
[FM87] -adic periods and -adic étale cohomology, Current trends in arithmetical algebraic geometry, Volume 67 (1987), pp. 179-207 | Zbl | MR | DOI
[Fon94] Exposé II: Les corps des périodes -adiques. Avec un appendice par Pierre Colmez: Le nombres algébriques sont denses dans , Périodes -adiques. Séminaire du Bures-sur-Yvette (1994), pp. 59-111 appendix 103–111 (French) | Numdam | Zbl | MR
[FS02] The spectral sequence relating algebraic -theory to motivic cohomology, Ann. Sci. Éc. Norm. Supér. (4), Volume 35 (2002), pp. 773-875 | MR | Zbl | Numdam | DOI
[GDK] Groupes de Monodromie en Géométrie Algébrique (Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II)), 340, Springer, Berlin, 1973 (438pp., MR 0354657) | MR | Zbl | DOI
[GH99] Topological cyclic homology of schemes, Algebraic -theory. Proceedings of an AMS-IMS-SIAM summer research conference (1999), pp. 41-87 | MR | Zbl
[GH06] The de Rham-Witt complex and -adic vanishing cycles, J. Am. Math. Soc., Volume 19 (2006), pp. 1-36 | MR | DOI | Zbl
[GP18] Enhancing the filtered derived category, J. Pure Appl. Algebra, Volume 222 (2018), pp. 3621-3674 (MR 3806745) | MR | Zbl | DOI
[Hes96] On the -typical curves in Quillen’s -theory, Acta Math., Volume 177 (1996), pp. 1-53 | MR | DOI | Zbl
[Hes06] On the topological cyclic homology of the algebraic closure of a local field, An Alpine anthology of homotopy theory, 399, Amer. Math. Soc., Providence, 2006, pp. 133-162 | MR | Zbl | DOI
[Hes18] Topological Hochschild homology and the Hasse-Weil zeta function, An Alpine Bouquet of algebraic topology, 708, Amer. Math. Soc., Providence, 2018, pp. 157-180 (MR 3807755) | MR | Zbl | DOI
[HM97] On the -theory of finite algebras over Witt vectors of perfect fields, Topology, Volume 36 (1997), pp. 29-101 | MR | DOI | Zbl
[HM03] On the -theory of local fields, Ann. Math. (2), Volume 158 (2003), pp. 1-113 | MR | DOI | Zbl
[Hoy15] M. Hoyois, The fixed points of the circle action on Hochschild homology, 2015, | arXiv
[Ill71] Complexe cotangent et déformations. I, 239, Springer, Berlin, 1971 | Zbl | MR | DOI
[Ill79] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4), Volume 12 (1979), pp. 501-661 | Zbl | MR | Numdam | DOI
[IR83] Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, Volume 57 (1983), pp. 73-212 | Zbl | MR | Numdam | DOI
[Kal18] Co-periodic cyclic homology, Adv. Math., Volume 334 (2018), pp. 81-150 (MR 3828734) | MR | Zbl | DOI
[Kat87] On -adic vanishing cycles (application of ideas of Fontaine-Messing), Algebraic geometry, Volume 10 (1987), pp. 207-251 | MR | Zbl | DOI
[Kis06] Crystalline representations and -crystals, Algebraic geometry and number theory, 253, Birkhäuser Boston, Boston, 2006, pp. 459-496 | MR | Zbl | DOI
[Lod92] Cyclic homology, 301, Springer, Berlin, 1992 (Appendix E by María O. Ronco) | Zbl | MR | DOI
[Lur09] Higher topos theory, 170, Princeton University Press, Princeton, 2009 | Zbl | MR | DOI
[Lur18a] Higher algebra, 2018 (http://www.math.harvard.edu/~lurie/)
[Lur18b] Spectral algebraic geometry, 2018 (http://www.math.harvard.edu/~lurie/)
[Mil76] Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Supér. (4), Volume 9 (1976), pp. 171-201 | MR | Zbl | Numdam | DOI
[Mor18] M. Morrow, -adic vanishing cycles as Frobenius-fixed points, | arXiv
[NS18] On topological cyclic homology, Acta Math., Volume 221 (2018), pp. 203-409 (English) | MR | Zbl | DOI
[Nyg81] Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. Éc. Norm. Supér. (4), Volume 14 (1981), pp. 369-401 | MR | Zbl | Numdam | DOI
[OB12] N. Ojeda Baer, Towards the cohomological construction of Breuil-Kisin modules, 63, Thesis (Ph.D.), The University of Chicago, MR 3054898. | MR
[Qui70] On the (co-)homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., vol. XVII, New York, 1968), Amer. Math. Soc., Providence, 1970, pp. 65-87 | MR | Zbl | DOI
[Sat07] -adic étale Tate twists and arithmetic duality, Ann. Sci. Éc. Norm. Supér. (4), Volume 40 (2007), pp. 519-588 (with an appendix by Kei Hagihara) | Zbl | MR | DOI
[Sch94] -adic points of motives, Motives, Volume 55 (1994), pp. 225-249 | MR | Zbl | DOI
[Shu61] Cohomologie des algèbres associatives, Ann. Sci. Éc. Norm. Supér. (3), Volume 78 (1961), pp. 163-209 | Zbl | MR | Numdam | DOI
[Sta18] The Stacks Project Authors, Stacks Project, 2018, http://stacks.math.columbia.edu.
[SW13] Moduli of -divisible groups, Camb. J. Math., Volume 1 (2013), pp. 145-237 | MR | DOI | Zbl
[Tsa98] Topological Hochschild homology and the homotopy descent problem, Topology, Volume 37 (1998), pp. 913-934 | MR | DOI | Zbl
[Tsu99] -adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., Volume 137 (1999), pp. 233-411 | MR | DOI | Zbl
[Yek18] Flatness and completion revisited, Algebr. Represent. Theory, Volume 21 (2018), pp. 717-736 (MR 3826724) | MR | Zbl | DOI
Cité par Sources :





