Article
Topological Hochschild homology and integral p-adic Hodge theory
Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 199-310

In mixed characteristic and in equal characteristic p we define a filtration on topological Hochschild homology and its variants. This filtration is an analogue of the filtration of algebraic K-theory by motivic cohomology. Its graded pieces are related in mixed characteristic to the complex AΩ constructed in our previous work, and in equal characteristic p to crystalline cohomology. Our construction of the filtration on THH is via flat descent to semiperfectoid rings.

As one application, we refine the construction of the AΩ-complex by giving a cohomological construction of Breuil–Kisin modules for proper smooth formal schemes over 𝒪 K , where K is a discretely valued extension of 𝐐 p with perfect residue field. As another application, we define syntomic sheaves 𝐙 p (n) for all n0 on a large class of 𝐙 p -algebras, and identify them in terms of p-adic nearby cycles in mixed characteristic, and in terms of logarithmic de Rham-Witt sheaves in equal characteristic p.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-019-00106-9

Bhatt, Bhargav 1 ; Morrow, Matthew  ; Scholze, Peter 

1
@article{PMIHES_2019__129__199_0,
     author = {Bhatt, Bhargav and Morrow, Matthew and Scholze, Peter},
     title = {Topological {Hochschild} homology and integral $p$-adic {Hodge} theory},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {199--310},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {129},
     doi = {10.1007/s10240-019-00106-9},
     mrnumber = {3949030},
     zbl = {1478.14039},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-019-00106-9/}
}
TY  - JOUR
AU  - Bhatt, Bhargav
AU  - Morrow, Matthew
AU  - Scholze, Peter
TI  - Topological Hochschild homology and integral $p$-adic Hodge theory
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 199
EP  - 310
VL  - 129
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-019-00106-9/
DO  - 10.1007/s10240-019-00106-9
LA  - en
ID  - PMIHES_2019__129__199_0
ER  - 
%0 Journal Article
%A Bhatt, Bhargav
%A Morrow, Matthew
%A Scholze, Peter
%T Topological Hochschild homology and integral $p$-adic Hodge theory
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 199-310
%V 129
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-019-00106-9/
%R 10.1007/s10240-019-00106-9
%G en
%F PMIHES_2019__129__199_0
Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Topological Hochschild homology and integral $p$-adic Hodge theory. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 199-310. doi: 10.1007/s10240-019-00106-9

[Ant18] B. Antieau, Periodic cyclic homology and derived de Rham cohomology, | arXiv

[Avr99] Avramov, L. L. Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology, Ann. Math. (2), Volume 150 (1999), pp. 455-487 | MR | DOI | Zbl

[BBD82] Beilinson, A. A.; Bernstein, J.; Deligne, P. Faisceaux pervers, Analysis and topology on singular spaces, I, Volume 100 (1982), pp. 5-171 | MR | Zbl

[Bei87] Beilinson, A. A. On the derived category of perverse sheaves, K -theory, arithmetic and geometry, Volume 1289 (1987), pp. 27-41 | MR | Zbl | DOI

[Ber74] Berthelot, P. Cohomologie cristalline des schémas de caractéristique p > 0 , 407, Springer, Berlin, 1974 | Zbl | MR

[Bha12a] B. Bhatt, Completions and derived de Rham cohomology, 2012, | arXiv

[Bha12b] B. Bhatt, p-adic derived de Rham cohomology, 2012, | arXiv

[BHM93] Bökstedt, M.; Hsiang, W. C.; Madsen, I. The cyclotomic trace and algebraic K-theory of spaces, Invent. Math., Volume 111 (1993), pp. 465-539 | MR | DOI | Zbl

[BMS18] Bhatt, B.; Morrow, M.; Scholze, P. Integral p-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci., Volume 128 (2018), pp. 219-397 (MR 3905467) | MR | Zbl | DOI

[Bök85a] M. Bökstedt, Topological Hochschild homology, Bielefeld preprint, 1985.

[Bök85b] M. Bökstedt, Topological Hochschild homology of 𝐙 and 𝐙/p, Bielefeld preprint, 1985.

[Bre00] Breuil, C. Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math. (2), Volume 152 (2000), pp. 489-549 | MR | DOI | Zbl

[BS] B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation.

[BS15] Bhatt, B.; Scholze, P. The pro-étale topology for schemes, Astérisque, Volume 369 (2015), pp. 99-201 | Zbl | MR

[BS17] Bhatt, B.; Scholze, P. Projectivity of the Witt vector affine Grassmannian, Invent. Math., Volume 209 (2017), pp. 329-423 | MR | DOI | Zbl

[CL19] Bryden, C.; Liu, T. Breuil-Kisin modules via crystalline cohomology, Trans. Am. Math. Soc., Volume 371 (2019), pp. 1199-1230 (MR 3885176) | MR | Zbl

[CMM18] D. Clausen, A. Mathew and M. Morrow, K-theory and topological cyclic homology of Henselian pairs, | arXiv

[CN17] Colmez, P.; Nizioł, W. Syntomic complexes and p-adic nearby cycles, Invent. Math., Volume 208 (2017), pp. 1-108 | MR | DOI | Zbl

[Del71] Deligne, P. Théorie de Hodge. II, Publ. Math. IHÉS, Volume 40 (1971), pp. 5-57 (MR 0498551) | Zbl | MR | Numdam | DOI

[Dri18] V. Drinfeld, A Stacky approach to crystals, 2018, | arXiv

[FF18] Fargues, L.; Fontaine, J.-M. Courbes et fibrés vectoriels en théorie de Hodge p -adique, 406, Société Mathématique de France (SMF), Paris, 2018 (French) | Zbl | MR

[FJ13] J.-M. Fontaine and U. Jannsen, Frobenius gauges and a new theory of p-torsion sheaves in characteristic p. I, 2013, | arXiv

[FM87] Fontaine, J.-M.; Messing, W. p-adic periods and p-adic étale cohomology, Current trends in arithmetical algebraic geometry, Volume 67 (1987), pp. 179-207 | Zbl | MR | DOI

[Fon94] Fontaine, J.-M. Exposé II: Les corps des périodes p-adiques. Avec un appendice par Pierre Colmez: Le nombres algébriques sont denses dans B dR + , Périodes p -adiques. Séminaire du Bures-sur-Yvette (1994), pp. 59-111 appendix 103–111 (French) | Numdam | Zbl | MR

[FS02] Friedlander, E. M.; Suslin, A. The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. Éc. Norm. Supér. (4), Volume 35 (2002), pp. 773-875 | MR | Zbl | Numdam | DOI

[GDK] Deligne, P.; Katz, N. Groupes de Monodromie en Géométrie Algébrique (Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II)), 340, Springer, Berlin, 1973 (438pp., MR 0354657) | MR | Zbl | DOI

[GH99] Geisser, T.; Hesselholt, L. Topological cyclic homology of schemes, Algebraic K -theory. Proceedings of an AMS-IMS-SIAM summer research conference (1999), pp. 41-87 | MR | Zbl

[GH06] Geisser, T.; Hesselholt, L. The de Rham-Witt complex and p-adic vanishing cycles, J. Am. Math. Soc., Volume 19 (2006), pp. 1-36 | MR | DOI | Zbl

[GP18] Gwilliam, O.; Pavlov, D. Enhancing the filtered derived category, J. Pure Appl. Algebra, Volume 222 (2018), pp. 3621-3674 (MR 3806745) | MR | Zbl | DOI

[Hes96] Hesselholt, L. On the p-typical curves in Quillen’s K-theory, Acta Math., Volume 177 (1996), pp. 1-53 | MR | DOI | Zbl

[Hes06] Hesselholt, L. On the topological cyclic homology of the algebraic closure of a local field, An Alpine anthology of homotopy theory, 399, Amer. Math. Soc., Providence, 2006, pp. 133-162 | MR | Zbl | DOI

[Hes18] Hesselholt, L. Topological Hochschild homology and the Hasse-Weil zeta function, An Alpine Bouquet of algebraic topology, 708, Amer. Math. Soc., Providence, 2018, pp. 157-180 (MR 3807755) | MR | Zbl | DOI

[HM97] Hesselholt, L.; Madsen, I. On the K-theory of finite algebras over Witt vectors of perfect fields, Topology, Volume 36 (1997), pp. 29-101 | MR | DOI | Zbl

[HM03] Hesselholt, L.; Madsen, I. On the K-theory of local fields, Ann. Math. (2), Volume 158 (2003), pp. 1-113 | MR | DOI | Zbl

[Hoy15] M. Hoyois, The fixed points of the circle action on Hochschild homology, 2015, | arXiv

[Ill71] Illusie, L. Complexe cotangent et déformations. I, 239, Springer, Berlin, 1971 | Zbl | MR | DOI

[Ill79] Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4), Volume 12 (1979), pp. 501-661 | Zbl | MR | Numdam | DOI

[IR83] Illusie, L.; Raynaud, M. Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, Volume 57 (1983), pp. 73-212 | Zbl | MR | Numdam | DOI

[Kal18] Kaledin, D. Co-periodic cyclic homology, Adv. Math., Volume 334 (2018), pp. 81-150 (MR 3828734) | MR | Zbl | DOI

[Kat87] Kato, K. On p-adic vanishing cycles (application of ideas of Fontaine-Messing), Algebraic geometry, Volume 10 (1987), pp. 207-251 | MR | Zbl | DOI

[Kis06] Kisin, M. Crystalline representations and F-crystals, Algebraic geometry and number theory, 253, Birkhäuser Boston, Boston, 2006, pp. 459-496 | MR | Zbl | DOI

[Lod92] Loday, J.-L. Cyclic homology, 301, Springer, Berlin, 1992 (Appendix E by María O. Ronco) | Zbl | MR | DOI

[Lur09] Lurie, J. Higher topos theory, 170, Princeton University Press, Princeton, 2009 | Zbl | MR | DOI

[Lur18a] Lurie, J. Higher algebra, 2018 (http://www.math.harvard.edu/~lurie/)

[Lur18b] Lurie, J. Spectral algebraic geometry, 2018 (http://www.math.harvard.edu/~lurie/)

[Mil76] Milne, J. S. Duality in the flat cohomology of a surface, Ann. Sci. Éc. Norm. Supér. (4), Volume 9 (1976), pp. 171-201 | MR | Zbl | Numdam | DOI

[Mor18] M. Morrow, p-adic vanishing cycles as Frobenius-fixed points, | arXiv

[NS18] Nikolaus, T.; Scholze, P. On topological cyclic homology, Acta Math., Volume 221 (2018), pp. 203-409 (English) | MR | Zbl | DOI

[Nyg81] Nygaard, N. O. Slopes of powers of Frobenius on crystalline cohomology, Ann. Sci. Éc. Norm. Supér. (4), Volume 14 (1981), pp. 369-401 | MR | Zbl | Numdam | DOI

[OB12] N. Ojeda Baer, Towards the cohomological construction of Breuil-Kisin modules, 63, Thesis (Ph.D.), The University of Chicago, MR 3054898. | MR

[Qui70] Quillen, D. On the (co-)homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., vol. XVII, New York, 1968), Amer. Math. Soc., Providence, 1970, pp. 65-87 | MR | Zbl | DOI

[Sat07] Sato, K. p-adic étale Tate twists and arithmetic duality, Ann. Sci. Éc. Norm. Supér. (4), Volume 40 (2007), pp. 519-588 (with an appendix by Kei Hagihara) | Zbl | MR | DOI

[Sch94] Schneider, P. p-adic points of motives, Motives, Volume 55 (1994), pp. 225-249 | MR | Zbl | DOI

[Shu61] Shukla, U. Cohomologie des algèbres associatives, Ann. Sci. Éc. Norm. Supér. (3), Volume 78 (1961), pp. 163-209 | Zbl | MR | Numdam | DOI

[Sta18] The Stacks Project Authors, Stacks Project, 2018, http://stacks.math.columbia.edu.

[SW13] Scholze, P.; Weinstein, J. Moduli of p-divisible groups, Camb. J. Math., Volume 1 (2013), pp. 145-237 | MR | DOI | Zbl

[Tsa98] Tsalidis, S. Topological Hochschild homology and the homotopy descent problem, Topology, Volume 37 (1998), pp. 913-934 | MR | DOI | Zbl

[Tsu99] Tsuji, T. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., Volume 137 (1999), pp. 233-411 | MR | DOI | Zbl

[Yek18] Yekutieli, A. Flatness and completion revisited, Algebr. Represent. Theory, Volume 21 (2018), pp. 717-736 (MR 3826724) | MR | Zbl | DOI

Cité par Sources :