In this paper we construct an explicit interpolation formula for Schwartz functions on the real line. The formula expresses the value of a function at any given point in terms of the values of the function and its Fourier transform on the set . The functions in the interpolating basis are constructed in a closed form as an integral transform of weakly holomorphic modular forms for the theta subgroup of the modular group.
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-018-0101-z
Radchenko, Danylo 1 ; Viazovska, Maryna 1
@article{PMIHES_2019__129__51_0,
author = {Radchenko, Danylo and Viazovska, Maryna},
title = {Fourier interpolation on the real line},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {51--81},
year = {2019},
publisher = {Springer Berlin Heidelberg},
address = {Berlin/Heidelberg},
volume = {129},
doi = {10.1007/s10240-018-0101-z},
mrnumber = {3949027},
zbl = {1455.11075},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-018-0101-z/}
}
TY - JOUR AU - Radchenko, Danylo AU - Viazovska, Maryna TI - Fourier interpolation on the real line JO - Publications Mathématiques de l'IHÉS PY - 2019 SP - 51 EP - 81 VL - 129 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - https://www.numdam.org/articles/10.1007/s10240-018-0101-z/ DO - 10.1007/s10240-018-0101-z LA - en ID - PMIHES_2019__129__51_0 ER -
%0 Journal Article %A Radchenko, Danylo %A Viazovska, Maryna %T Fourier interpolation on the real line %J Publications Mathématiques de l'IHÉS %D 2019 %P 51-81 %V 129 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U https://www.numdam.org/articles/10.1007/s10240-018-0101-z/ %R 10.1007/s10240-018-0101-z %G en %F PMIHES_2019__129__51_0
Radchenko, Danylo; Viazovska, Maryna. Fourier interpolation on the real line. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 51-81. doi: 10.1007/s10240-018-0101-z
[1.] Hecke’s Theory of Modular Forms and Dirichlet Series, World Scientific, Singapore, 2008 | Zbl | MR
[2.] New upper bounds on sphere packings I, Ann. Math. (2), Volume 157 (2003), pp. 689-714 | MR | DOI | Zbl
[3.] The sphere packing problem in dimension 24, Ann. Math., Volume 185 (2017), pp. 1017-1033 | MR | DOI | Zbl
[4.] Faber polynomials and the Faber series, Am. Math. Mon., Volume 78 (1971), pp. 577-596 | MR | DOI | Zbl
[5.] On the zeros and coefficients of certain weakly holomorphic modular forms, Pure Appl. Math. Q., Volume 4 (2008), pp. 1327-1340 | MR | DOI | Zbl
[6.] Eine Verallgemeinerung der Abelschen Integrale, Math. Z., Volume 67 (1957), pp. 267-298 | MR | DOI | Zbl
[7.] Five short stories about the cardinal series, Bull. Am. Math. Soc., Volume 12 (1985), pp. 45-89 | MR | DOI | Zbl
[8.] Concordance and the harmonic analysis of sequences, Acta Math., Volume 101 (1959), pp. 235-271 | MR | DOI | Zbl
[9.] Some new results on the Eichler cohomology of automorphic forms, Bull. Am. Math. Soc., Volume 80 (1974), pp. 607-632 | MR | DOI | Zbl
[10.] On the growth of entire automorphic integrals, Results Math., Volume 8 (1985), pp. 146-152 | MR | Zbl | DOI
[11.] Measures with locally finite support and spectrum, Proc. Natl. Acad. Sci., Volume 113 (2016), pp. 3152-3158 | MR | DOI | Zbl
[12.] The value of the definite integral , Q. J. Math., Volume 68 (1920), pp. 329-342 | JFM
[13.] Tata Lectures on Theta: Jacobian Theta Functions and Differential Equations, Birkhäuser, Basel, 1983 | Zbl | MR | DOI
[14.] Some definite integrals connected with Gauss’s sums, Messenger Math., Volume 44 (1915), pp. 75-85 | JFM
[15.] Communications in the presence of noise, Proc. IRE, Volume 37 (1949), pp. 10-21 | MR | DOI
[16.] Some extremal functions in Fourier analysis, Bull. Am. Math. Soc., Volume 12 (1985), pp. 183-216 | MR | DOI | Zbl
[17.] The sphere packing problem in dimension 8, Ann. Math., Volume 185 (2017), pp. 991-1015 | MR | DOI | Zbl
[18.] Methods of the Theory of Generalized Functions, 6, Taylor & Francis, London, 2002 | Zbl | MR | DOI
[19.] On the functions which are represented by the expansions of the interpolation theory, Proc. R. Soc. Edinb., Volume 35 (1915), pp. 181-194 | DOI | Zbl
[20.] Traces of singular moduli (Bogomolov, F.; Katzarkov, L., eds.), Motives, Polylogarithms and Hodge Theory, Part I, International Press, Somerville, 2002, pp. 211-244 | MR | Zbl
[21.] Elliptic modular forms and their applications (Ranestad, K., ed.), The 1-2-3 of Modular Forms, Springer, Berlin, 2008, pp. 1-103 | MR | Zbl
[22.] S. Zwegers, Mock theta functions, Thesis, Universiteit Utrecht, 2002. | Zbl
Cité par Sources :





