Article
Fourier interpolation on the real line
Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 51-81

In this paper we construct an explicit interpolation formula for Schwartz functions on the real line. The formula expresses the value of a function at any given point in terms of the values of the function and its Fourier transform on the set {0,±1,±2,±3,}. The functions in the interpolating basis are constructed in a closed form as an integral transform of weakly holomorphic modular forms for the theta subgroup of the modular group.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1007/s10240-018-0101-z

Radchenko, Danylo 1 ; Viazovska, Maryna 1

1
@article{PMIHES_2019__129__51_0,
     author = {Radchenko, Danylo and Viazovska, Maryna},
     title = {Fourier interpolation on the real line},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {51--81},
     year = {2019},
     publisher = {Springer Berlin Heidelberg},
     address = {Berlin/Heidelberg},
     volume = {129},
     doi = {10.1007/s10240-018-0101-z},
     mrnumber = {3949027},
     zbl = {1455.11075},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-018-0101-z/}
}
TY  - JOUR
AU  - Radchenko, Danylo
AU  - Viazovska, Maryna
TI  - Fourier interpolation on the real line
JO  - Publications Mathématiques de l'IHÉS
PY  - 2019
SP  - 51
EP  - 81
VL  - 129
PB  - Springer Berlin Heidelberg
PP  - Berlin/Heidelberg
UR  - https://www.numdam.org/articles/10.1007/s10240-018-0101-z/
DO  - 10.1007/s10240-018-0101-z
LA  - en
ID  - PMIHES_2019__129__51_0
ER  - 
%0 Journal Article
%A Radchenko, Danylo
%A Viazovska, Maryna
%T Fourier interpolation on the real line
%J Publications Mathématiques de l'IHÉS
%D 2019
%P 51-81
%V 129
%I Springer Berlin Heidelberg
%C Berlin/Heidelberg
%U https://www.numdam.org/articles/10.1007/s10240-018-0101-z/
%R 10.1007/s10240-018-0101-z
%G en
%F PMIHES_2019__129__51_0
Radchenko, Danylo; Viazovska, Maryna. Fourier interpolation on the real line. Publications Mathématiques de l'IHÉS, Tome 129 (2019), pp. 51-81. doi: 10.1007/s10240-018-0101-z

[1.] Berndt, B. C.; Knopp, M. I. Hecke’s Theory of Modular Forms and Dirichlet Series, World Scientific, Singapore, 2008 | Zbl | MR

[2.] Cohn, H.; Elkies, N. New upper bounds on sphere packings I, Ann. Math. (2), Volume 157 (2003), pp. 689-714 | MR | DOI | Zbl

[3.] Cohn, H.; Kumar, A.; Miller, S. D.; Radchenko, D.; Viazovska, M. S. The sphere packing problem in dimension 24, Ann. Math., Volume 185 (2017), pp. 1017-1033 | MR | DOI | Zbl

[4.] Curtiss, J. H. Faber polynomials and the Faber series, Am. Math. Mon., Volume 78 (1971), pp. 577-596 | MR | DOI | Zbl

[5.] Duke, W.; Jenkins, P. On the zeros and coefficients of certain weakly holomorphic modular forms, Pure Appl. Math. Q., Volume 4 (2008), pp. 1327-1340 | MR | DOI | Zbl

[6.] Eichler, M. Eine Verallgemeinerung der Abelschen Integrale, Math. Z., Volume 67 (1957), pp. 267-298 | MR | DOI | Zbl

[7.] Higgins, J. R. Five short stories about the cardinal series, Bull. Am. Math. Soc., Volume 12 (1985), pp. 45-89 | MR | DOI | Zbl

[8.] Guinand, A. P. Concordance and the harmonic analysis of sequences, Acta Math., Volume 101 (1959), pp. 235-271 | MR | DOI | Zbl

[9.] Knopp, M. I. Some new results on the Eichler cohomology of automorphic forms, Bull. Am. Math. Soc., Volume 80 (1974), pp. 607-632 | MR | DOI | Zbl

[10.] Knopp, M. I. On the growth of entire automorphic integrals, Results Math., Volume 8 (1985), pp. 146-152 | MR | Zbl | DOI

[11.] Meyer, Y. F. Measures with locally finite support and spectrum, Proc. Natl. Acad. Sci., Volume 113 (2016), pp. 3152-3158 | MR | DOI | Zbl

[12.] Mordell, L. J. The value of the definite integral - e at 2 +bt e ct +ddt, Q. J. Math., Volume 68 (1920), pp. 329-342 | JFM

[13.] Mumford, D. Tata Lectures on Theta: Jacobian Theta Functions and Differential Equations, Birkhäuser, Basel, 1983 | Zbl | MR | DOI

[14.] Ramanujan, S. Some definite integrals connected with Gauss’s sums, Messenger Math., Volume 44 (1915), pp. 75-85 | JFM

[15.] Shannon, C. E. Communications in the presence of noise, Proc. IRE, Volume 37 (1949), pp. 10-21 | MR | DOI

[16.] Vaaler, J. D. Some extremal functions in Fourier analysis, Bull. Am. Math. Soc., Volume 12 (1985), pp. 183-216 | MR | DOI | Zbl

[17.] Viazovska, M. S. The sphere packing problem in dimension 8, Ann. Math., Volume 185 (2017), pp. 991-1015 | MR | DOI | Zbl

[18.] Vladimirov, V. S. Methods of the Theory of Generalized Functions, 6, Taylor & Francis, London, 2002 | Zbl | MR | DOI

[19.] Whittaker, E. T. On the functions which are represented by the expansions of the interpolation theory, Proc. R. Soc. Edinb., Volume 35 (1915), pp. 181-194 | DOI | Zbl

[20.] Zagier, D. Traces of singular moduli (Bogomolov, F.; Katzarkov, L., eds.), Motives, Polylogarithms and Hodge Theory, Part I, International Press, Somerville, 2002, pp. 211-244 | MR | Zbl

[21.] Zagier, D. Elliptic modular forms and their applications (Ranestad, K., ed.), The 1-2-3 of Modular Forms, Springer, Berlin, 2008, pp. 1-103 | MR | Zbl

[22.] S. Zwegers, Mock theta functions, Thesis, Universiteit Utrecht, 2002. | Zbl

Cité par Sources :