@article{SPS_1976__10__235_0,
author = {Williams, David},
title = {On a stopped brownian motion formula of {H.} {M.} {Taylor}},
journal = {S\'eminaire de probabilit\'es},
pages = {235--239},
year = {1976},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {10},
mrnumber = {461687},
zbl = {0368.60056},
language = {en},
url = {https://www.numdam.org/item/SPS_1976__10__235_0/}
}
Williams, David. On a stopped brownian motion formula of H. M. Taylor. Séminaire de probabilités, Tome 10 (1976), pp. 235-239. https://www.numdam.org/item/SPS_1976__10__235_0/
[1] . (1968). Probability. Addison-Wesley, Reading, Mass.. | Zbl | MR
[2] and , (1965). Diffusion processes and their sample paths. Springer, Berlin. | Zbl
[3] (1963). Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 56-86. | Zbl | MR
[4] ---- (1969). Brownian local times and taboo processes. ibid. 143 173-85. | Zbl | MR
[5] (1969). Stochastic integrals. Academic Press, New York. | Zbl | MR
[6] ---- (1975). Brownian local times. Advances in Math. 15 91-111. | Zbl | MR
[7] , (1963). Sojourn times of diffusion processes. Illinois J. Math. 7 615-30. | Zbl | MR
[8] (1975). A stopped Brownian motion formula. Ann. Probability 3 234-246. | Zbl | MR
[9] (1969). Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75 1035-36. | Zbl | MR
[10] ---- (1970). Decomposing the Brownian path. ibid. 76 871-73. | Zbl | MR
[11] ---- (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28 738-68. | Zbl | MR





