@article{SPS_1994__28__116_0,
author = {Bertoin, Jean and Doney, R.A.},
title = {On conditioning random walks in an exponential family to stay nonnegative},
journal = {S\'eminaire de probabilit\'es},
pages = {116--121},
year = {1994},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {28},
mrnumber = {1329107},
zbl = {0814.60079},
language = {fr},
url = {https://www.numdam.org/item/SPS_1994__28__116_0/}
}
TY - JOUR AU - Bertoin, Jean AU - Doney, R.A. TI - On conditioning random walks in an exponential family to stay nonnegative JO - Séminaire de probabilités PY - 1994 SP - 116 EP - 121 VL - 28 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1994__28__116_0/ LA - fr ID - SPS_1994__28__116_0 ER -
%0 Journal Article %A Bertoin, Jean %A Doney, R.A. %T On conditioning random walks in an exponential family to stay nonnegative %J Séminaire de probabilités %D 1994 %P 116-121 %V 28 %I Springer - Lecture Notes in Mathematics %U https://www.numdam.org/item/SPS_1994__28__116_0/ %G fr %F SPS_1994__28__116_0
Bertoin, Jean; Doney, R.A. On conditioning random walks in an exponential family to stay nonnegative. Séminaire de probabilités, Tome 28 (1994), pp. 116-121. https://www.numdam.org/item/SPS_1994__28__116_0/
[1] and : On conditioning a random walk to stay nonnegative, Ann. Probab. (to appear). | Zbl | MR
[2] , , and : Regular Variation. Cambridge University Press 1987, Cambridge. | Zbl | MR
[3] : Discrete potential theory and boundaries, J. Math. Mecha. 8 (1959), 433-458. | Zbl | MR
[4] : Limit theorems for random walks conditioned to stay positive, Ann. Probab.20 (1992), 801-824. | Zbl | MR
[5] : On the probability of large deviations for sums of independent random variables, Theory Probab. Appl. 10 (1965), 287-97. | Zbl | MR
[6] : Markov Chains. North Holland 1975, Amsterdam. | Zbl | MR
[7] :Principles of Random Walks. Van Nostrand 1964, Princeton. | Zbl | MR
[8] and : The exponential rate of convergence of the maximum of a random walk, J. Appl. Prob.12 (1975), 279-288. | Zbl | MR






