Bibliographie
[1] F. Bethuel, H. Brezis and F. Hélein (1994), Ginzburg-Landau Vortices, Birkhäuser, Basel. MR 1269538 | Zbl 0802.35142
[2] F. Bethuel and J.C. Saut (1997), Travelling waves for the Gross-Pitrevskii equation, preprint.
[3] S. Chanillo and M. Kiesling (1995), Symmetry of solutions of Ginzburg-Landau equations, Compt. Rend. Acad. Sci. Paris, t. 327, Série I, 1023–1026. MR 1360565 | Zbl 0843.35004
[4] Y. Chen, C. Elliot and T. Qui (1994), Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Royal Soc. Edinburgh 124A, 1068-1075. MR 1313190 | Zbl 0816.34003
[5] J.E. Colliander and R.L. Jerrard (1998), Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, preprint, MSRI. MR 1623410
[6] J. Creswick and N. Morrison (1980), On the dynamics of quantum vortices, Phys. Lett. A 76, 267. MR 595647
[7] W. E (1994), Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D 77, 383-404. MR 1297726 | Zbl 0814.34039
[8] P. Fife and L.A. Peletier (1996), On the location of defects in stationary solutions of the Ginzburg-Landau equations on , Quart. Appl. Math. 54, 85-104. MR 1373840 | Zbl 0848.35042
[9] J. Fröhlich and M. Struwe (1990), Variational problems on vector bundles, Commun. Math. Phys. 131, 431-464. MR 1065892 | Zbl 0714.58012
[10] V.L. Ginzburg and L.P. Pitaevskii (1958), On the theory of superfluidity, Sov. Phys. JETP 7, 585. MR 105929
[11] E.P. Gross (1961), Nuovo Cimento A 20, 454. MR 128907 | Zbl 0100.42403
[12] E. Gross (1966), Dynamics of interacting bosons, in Physics of Many Particle Systems, ed. E. Meeron, Gordon and Breach, NY, 268.
[13] S. Gustafson (1997a), Stability of vortex solutions of the Ginzburg-Landau heat equation, in PDE’s and their applications (L. Seco et al, eds), Proceeding of Conference in PDE’s, Toronto June 1995. Zbl 0884.35054
[14] S. Gustafson (1997b), Symmetric solutions of hte Ginzburg-Landau in all dimensions, IMRN, 16, 807-816. MR 1472346 | Zbl 0883.35041
[15] S. Gustafson and I.M. Sigal (1998), Existence and stability of magnetic vortices. preprint (Toronto).
[16] P. Hagan (1982), Spiral waves in reaction diffusion equations, SIAM J. Applied Math. 42, 762–786. MR 665385 | Zbl 0507.35007
[17] M. Hervé, R. Hervé (1994), Étude qualitative des solutions réeles d’une équation différentielle liée a l’équation de Ginzburg-Landau, Ann. Inst. Henri Poincaré, Analyse non linéaire 11, 427-440. Numdam | Zbl 0836.34090
[18] S.V. Iordanskii and A.V. Smirnov (1978), JETP Lett. 27, 535.
[19] A. Jaffe and C. Taubes (1980), Vortices and Monopoles, Birkhäuser. MR 614447 | Zbl 0457.53034
[20] C. Jones, S.J. Putterman and P.M. Roberts (1986), Motion of Bose condensation V, J. Phys. A 19, 2991–3011.
[21] C.A. Jones and P.M. Roberts (1982), J. Phys. A: Math. Gen. 15, 2599–2619.
[22] E.A. Kuznetzov and J.J. Rasmussen (1995), Instability of two dimensional solitons and vortices in defocusing media, Phys. Rev. E 51, 5, 4479–4484.
[23] E.M. Lieb and M. Loss (1994), Symmetry of the Ginzburg-Landau minimizers in a disc, Math. Res. Lett. 1, 701–715. MR 1306015 | Zbl 0842.49014
[24] F.-H. Lin and J.X. Xin (1998), On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, preprint. MR 1674000 | Zbl 0920.35145
[25] N.S. Manton (1981), A remark on scattering of BPS monopoles, Phys. Letters 110B, N1, 54–56. MR 647883
[26] P. Mironescu (1995), On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal. 130, 334–344. MR 1335384 | Zbl 0839.35011
[27] P. Mironescu (1996), Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symmétrie radiale, preprint.
[28] J. Neu (1990), Vortices in complex scalar fields, Physica D 43, 385–406. MR 1067918 | Zbl 0711.35024
[29] L. Onsager (1949), Statistical hydrodynamics, Nuovo Cimento V-VI, Suppl. 2, 279. MR 36116
[30] Yu.N. Ovchinnikov and I.M. Sigal (1997a), Ginzburg-Landau equation I. General discussion, in P.D.E.’s and their Applications (L. Seco et al., eds.), Proceedings of Conference in PDE’s, Toronto, June 1995. Zbl 0912.35078
[31] Yu.N. Ovchinnikov and I.M. Sigal (1997b), The Ginzburg-Landau equation II. The energy of vortex configurations, preprint.
[32] Yu.N. Ovchinnikov and I.M. Sigal (1998a), The Ginzburg-Landau equation III. Vortex dynamics, Nonlinearity (to appear). MR 1644389 | Zbl 0990.35122
[33] Yu.N. Ovchinnikov and I.M. Sigal (1998b), Symmetry breaking in the Ginzburg-Landau equation, preprint.
[34] Yu.N. Ovchinnikov and I.M. Sigal (1998c), Long-time behaviour of Ginzburg-Landau vortices, Nonlinearity (to appear). MR 1644393 | Zbl 0910.35116
[35] Yu.N. Ovchinnikov and I.M. Sigal (1998d), Break up and creation of vorticies, in preparation.
[36] L.M. Pismen (1994), Structure and dynamics of defects in 2D complex vector field, Physica D 73, 244-258. MR 1277608 | Zbl 0812.58022
[37] L.M. Pismen and A. Nepomnyashchy (1993), Stability of vortex rings in a model of superflow, Physica D 69, 163–171. MR 1245660 | Zbl 0791.35128
[38] L.P. Pitaevskii (1961), Pis’ma Zh. Eksp. Teor. Fix. 77, 988 (Sov. Phys. JETP 13, 451).
[39] A.S. Schwarz (1993), Topology for physicists, Springer-Verlag. MR 1301777 | Zbl 0858.55001
[40] I. Shafrir (1994), Remarks on solutions of in , C.R. Acad. Sci. Paris, t. 318, Série I, 327–331. MR 1267609 | Zbl 0806.35030
[41] D. Stuart (1994), Comm. Math. Phys. 159, 51. MR 1257242 | Zbl 0807.35141
[42] G.B. Whitham (1974), Linear and Nonlinear Waves, John Wiley & Sons. MR 483954 | Zbl 0373.76001