@article{SEDP_1988-1989____A5_0,
author = {Brenner, P.},
title = {On strong globbal solutions of nonlinear hyperbolic equations},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:5},
pages = {1--15},
year = {1988-1989},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {1032281},
zbl = {0714.35048},
language = {en},
url = {https://www.numdam.org/item/SEDP_1988-1989____A5_0/}
}
TY - JOUR AU - Brenner, P. TI - On strong globbal solutions of nonlinear hyperbolic equations JO - Séminaire Goulaouic-Schwartz N1 - talk:5 PY - 1988-1989 SP - 1 EP - 15 PB - Ecole Polytechnique, Centre de Mathématiques UR - https://www.numdam.org/item/SEDP_1988-1989____A5_0/ LA - en ID - SEDP_1988-1989____A5_0 ER -
Brenner, P. On strong globbal solutions of nonlinear hyperbolic equations. Séminaire Goulaouic-Schwartz (1988-1989), Exposé no. 5, 15 p.. https://www.numdam.org/item/SEDP_1988-1989____A5_0/
1 : On the existence of Global smooth solutions for certain semilinear hyperbolic equations, Math.Z 167, 99-135 (1979) | Zbl | MR
2 : On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations, Math.Z 186, 383-391 (1984) | Zbl | MR
3 : Space-time means and non-linear Klein-Gordon equations, Research Report, Department of Mathematics, Chalmers Univ. of Technology and the University of Göteborg, 1985-19.
4 : : Global classical solutions of nonlinear wave equations, Math.Z 176, 87-121 (1981). | Zbl | MR
5 and : The Global Cauchy problem for the nonlinear Klein-Gordon equation, Math.Z 189, 487-5-5 (1985). | Zbl | MR
6 , : Zu einem Satz von F.E. Browder über nichtlineare Wellengleichungen, Math.Z. 141, 33-45 (1975). | Zbl | MR
7 : Mixed norm estimates for the Klein-Gordon equation. In Proceedings of a Conference of Harmonic Analysis (Chicago 1981). | Zbl
8 : Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44, 705/714 (1977). | Zbl | MR
9 : Space-time decay for solutions of wave equations, Advances in Math. 22, 302-311 (1976). | Zbl | MR





