@article{SEDP_1981-1982____A23_0,
author = {Berestycki, H.},
title = {Orbites p\'eriodiques de syst\`emes conservatifs},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:24},
pages = {1--17},
year = {1981-1982},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {671621},
zbl = {0513.70020},
language = {fr},
url = {https://www.numdam.org/item/SEDP_1981-1982____A23_0/}
}
TY - JOUR AU - Berestycki, H. TI - Orbites périodiques de systèmes conservatifs JO - Séminaire Goulaouic-Schwartz N1 - talk:24 PY - 1981-1982 SP - 1 EP - 17 PB - Ecole Polytechnique, Centre de Mathématiques UR - https://www.numdam.org/item/SEDP_1981-1982____A23_0/ LA - fr ID - SEDP_1981-1982____A23_0 ER -
Berestycki, H. Orbites périodiques de systèmes conservatifs. Séminaire Goulaouic-Schwartz (1981-1982), Exposé no. 24, 17 p.. https://www.numdam.org/item/SEDP_1981-1982____A23_0/
[1] , Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulousé 2 (1907), 203- 474. | Numdam
[2] : Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Comm. Pure Appl. Math. 29, (1976), 727-747. | Zbl | MR
[3] : Normal modes for non linear Hamiltonian systems. Inv. Math., 20 (1973), 47-57. | Zbl | MR
[4] : A perturbation theory near convex Hamlitonian systems. A paraître. | Zbl
[5] and : Existence of multiple periodic orbits for Hamiltonian systems on a starshaped energy surface. En préparation.
[6] : Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 31 (1978) 157-184. | Zbl | MR
[7] : Periodic orbits for convex Hamiltonian systems. Annals Math. 108, (1978), 507-518. | Zbl | MR
[8] et : On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. Math. 112 (1980), 283-319. | Zbl | MR
[9] : Periodic solutions of Hamiltonian systems: A survey. MRC Tech. Summ. Report # 2154 et article à paraître. | Zbl
[10] : A variational method for finding periodic solutions of differential equations.Nonlinear evolution equations (M.G. Crandall editor), Academic Press (1978) pp.222-251. | Zbl | MR
[11] and : Critical point theorems for indefinite functionals, Inv. Math. 52, (1979), 336-352. | Zbl | MR
[12] and : Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math. 33, (1980), 103-116. | Zbl | MR
[13] and : Nonlinear oscillations and boundary value problems for Hamiltonian systems. | Zbl
[14] : Subharmonic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 33, (1980), 609-633. | Zbl | MR
[15] and : Non trivial solutions for a class of non resonance problems and applications. Ann. Scuola Norm. Sup. Pisa, IV, VII (1980), 593-603. | Zbl | Numdam
[16] and : Existence d'une infinité de solutions périodiques de certains systèmes hamiltoniens en présence d'un terme de contrainte. Note C. R. Acad. Sc. Paris 292, série A (1981), 315-318. | Zbl | MR
[17] and : Forced vibrations of superquadratic Hamiltonian systems. Acta Mathematica, à paraître. | Zbl
[18] and : Existence of forced oscillations for some nonlinear differential équations. A paraître. | Zbl
[19] : periodic solutions of nonlinear vibrating strings and duality principle. A paraître au Bull. A.M.S. et Proc. Symposium on the mathematical heritage of H. Poincaré. | Zbl
[20] and : A topological method for the existence of periodic orbits to conservative systems. A paraître. Voir également la Note aux C. R. Acad. Sc. " Orbites périodiques de systèmes conservatifs: résolution de problèmes non-linéaires équivariants sous l'action de S1". A paraître (1982).
[21] , and : Global Hopf bifurcation from a multiple eigenvalue. Nonlinear Analysis, T.M.A. 2 (1978), 753-763. | Zbl | MR
[22] : An equivariant J-homomorphism theorem and applications. A paraître.
[23] : Bifurcation theory for Fredholm operators. Memoirs A.M.S., 7, n°174, (1976) | Zbl | MR
[24] : periodic solutions of large norm of Hamiltonian systems. A paraître. | Zbl
[25] and : Solutions of minimal period for a class of convex Hamiltonian systems. A paraître. | Zbl
[26] , and : Borsuk-Ulam theorems for arbitrary S1 actions and applications. MRC tech. Sum. Rep. # 2301 (1981) et et article à paraître. | Zbl






