Littelmann, Peter
Bases canoniques et applications
Séminaire Bourbaki, Tome 40 (1997-1998) , Exposé no. 847 , p. 287-306
Zbl 0966.17009 | MR 1685632
URL stable : http://www.numdam.org/item?id=SB_1997-1998__40__287_0

Bibliographie

[A] T. Ando, Totally positive matrices, Linear Alg. Appl. 90, (1987), 165-219. Zbl 0613.15014

[Bo] N. Bourbaki, Groupes et algèbres de Lie, Ch. 2,3, Hermann, Paris, (1972).

[BBD] A. Beilinson, J. Bernstein et P.. Deligne, Faisceaux pervers, Astérisque 100, (1982). Zbl 0536.14011

[BFZ] A. Berenstein, S. Fomin et A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122, (1996), 49-149. Zbl 0966.17011

[BZ] A. Berenstein et A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72, (1997), 128-166. Zbl 0891.20030

[CP] V. Chari et A. Pressley, A guide to quantum groups, Cambridge University Press, (1994). Zbl 0839.17009

[Cr] C. Cryer, The L U-factorization of totally positive matrices, Linear Algebra Appl. 7, (1973), 83-92. Zbl 0274.15004

[D] V.V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), 483-506. Zbl 0656.22007

[De] P. Desnanot, Complément de la théorie des équations du premier degré, Volland jeune, Paris, (1819).

[F] M. Fekete, Über ein Problem von Laguerre, Briefwechsel zwischen M. Fekete und G. Pólya, Rendiconti del Circ. Mat. Palermo 34 (1912), 89-100, 110-120. JFM 43.0145.02

[FZ] S. Fomin et A. Zelevinsky, Double Bruhat cells and total positivity, Prépublication de l'I.R.M.A. 8, Strasbourg (1998).

[FK] I. Frenkel et M. Khovanov, Canonical bases in tensor products and graphical calculus for Uq(sl2), Duke Math. J. 87 (1997), 409-480. Zbl 0883.17013

[FKK] I. Frenkel, M. Khovanov et A. Kirillov Jr., Kazhdan-Lusztig polynomials and canonical basis, à paraître dans J. Transf. Groups. Zbl 0918.17012

[GK] F. Gantmacher et M. Krein, Sur les matrices oscillatoires, C. R. Acad. Sci. Paris 201 (1935), 577-579. Zbl 0012.28903

[GP] M. Gasca, et J.M. Peña, On the characterization of totally positive matrices, Approximation theory, spline functions and applications, Kluwer, (1992), 357- 364. Zbl 0758.15014

[Ce] M. Geck, Representations of Hecke Algebras at Roots of Unity, Sém. Bourbaki, exp. n° 836, novembre 1997, à paraître dans Astérisque. Numdam | Zbl 0931.20006

[J] M.A. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252. Zbl 0602.17005

[Ka1] M. Kashiwara, On the crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516. Zbl 0739.17005

[Ka2] M. Kashiwara, Crystal bases of modified quantized enveloping algebras, Duke Math. J. 73 (1994), 383-413. Zbl 0794.17009

[KL] D. Kazhdan et G. Lusztig, Representation of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), 165-184. Zbl 0499.20035

[Ko] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), 195-338. Zbl 0433.22008

[LS] A. Lascoux et M.-P. Schützenberger, Polynômes de Kazhdan-Lusztig pour les grassmanniennes, Astérisque 87-88 (1981), 249-266. Zbl 0504.20007

[Lo] C. Loewner, On totally positive matrices, Math. Z. 63 (1955), 338-340. Zbl 0068.25004

[Lu1] G. Lusztig, Introduction to quantum groups, Progress in Math. 110, Birkhäuser, Boston, 1993. Zbl 0788.17010

[Lu2] G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry: in honor of Bertran Kostant, Progress in Math. 123, Birkhäuser, Boston (1994), 531-568. Zbl 0845.20034

[Lu3] G. Lusztig, Total positivity and canonical bases, Algebraic groups and Lie Groups, Austr. Math. Soc. Lect. Series 9, Cambridge Univ. Press (1997), 281-295. Zbl 0890.20034

[Lu4] G. Lusztig, Total positivity in partial flag manifolds, Representation Theory 2 (1998), 70-78. Zbl 0895.14014

[Lu5] G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Common trends in mathematics and quantum field theories, Progr. Theor. Phys. Suppl. 102 (1990), 175-201. Zbl 0776.17012

[Lu6] G. Lusztig, Canonical bases arising from quantized enveloping algebras, JAMS. 3 (1990), 447-498. Zbl 0703.17008

[Lu7] G. Lusztig, Quivers, perverse sheaves and quantum enveloping algebras, JAMS 4 (1991), 365-421. Zbl 0738.17011

[Lu8] G. Lusztig, Introduction to total positivity, prépublication (1998).

[Ma] O. Mathieu, Bases des représentations des groupes simples complexes, Sém. Bourbaki, exp. n° 743, Astérisque 201-203 (1991), 421-442. Numdam | Zbl 0755.17002

[Mu] T. Muir, The theory of determinants in the historical order of development, 2nd edition, vol. 1, Macmillan, London (1906). JFM 37.0181.02

[R1] K. Rietsch, The infinitesimal cone of a totally positive semigroup, Proc. AMS 125 (1997), 2565-2570. Zbl 0894.22011

[R2] K. Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, à paraître dans J. Algebra. Zbl 0920.20041

[R3] K. Rietsch, Intersections of Bruhat cells in real flag varieties, Internat. Math. Res. Notices 13 (1997), 623-640. Zbl 0889.20022

[Sc] I. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z. 32 (1930), 321-322. JFM 56.0106.06

[W] A.M. Whitney, A reduction theorem for totally positive matrices, J. d'Analyse Math. 2 (1952), 88-92. Zbl 0049.17104

[Z] A. Zelevinsky, Small resolutions of Schubert varieties, Funk. Anal. App. 17 (1983), 75-77. Zbl 0559.14006