Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article | Next article
Le Potier, Joseph
Fibrés de Higgs et systèmes locaux. Séminaire Bourbaki, 33 (1990-1991), Exp. No. 737, 48 p.
Full text djvu | pdf | Reviews MR 1157844 | Zbl 0762.14011 | 5 citations in Numdam

stable URL: http://www.numdam.org/item?id=SB_1990-1991__33__221_0

Bibliography

[1] M.F. Atiyah et R. Bott. The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. London A308 (1982), 523-615.  MR 702806 |  Zbl 0509.14014
[2] F.A. Bogomolov. Holomorphic tensors and vector bundles on projectives varieties, Math. USSR Izvestija 13 (1979), 499-555.  Zbl 0439.14002
[3] R. Bott and S.S. Chern. Hermitian vector bundles and the equidistribution of the zeros of their holomorphic cross-sections, Acta Mathematica 114 (1968), 71-112.  MR 185607 |  Zbl 0148.31906
[4] K. Corlette. Flat G-bundles with canonical metrics, J. Diff. Geom. 28 (1988), 361-382.  MR 965220 |  Zbl 0676.58007
[5] P. Deligne. Equations différentielles à points singuliers réguliers, Lecture Notes in Maths 163 (1970) Springer.  MR 417174 |  Zbl 0244.14004
[6] S.K. Donaldson. Infinite determinants, stable bundles and curvature, Duke Math. Journal 54.1 (1987), 231-247.
Article |  MR 885784 |  Zbl 0627.53052
[7] S.K. Donaldson. Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc.(3)50 (1985), 1-26.  MR 765366 |  Zbl 0529.53018
[8] S.K. Donaldson. Twisted harmonic maps and self-duality equations, Proc. London Math. Soc 55 (1987), 127-131.  MR 887285 |  Zbl 0634.53046
[9] S.K. Donaldson. A new proof of a theorem of Narasimhan and Se- shadri, J. Differential Geom. 18 (1983), 269-277.  MR 710055 |  Zbl 0504.49027
[10] J. Eells et J.H. Sampson. Harmonic mappings of Riemannian manifolds, Amer. J. of Math. 86 (1964), 109-160.  MR 164306 |  Zbl 0122.40102
[11] H. Flenner. Restrictions of semistable bundles on projective varieties, Comment. Math. Helvetici 59 (1984), 635-650.  MR 780080 |  Zbl 0599.14015
[12] D. Gieseker. On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1970), 45-60.  MR 466475 |  Zbl 0381.14003
[13] W. Goldman et J. Millson. The deformation theory of representation of fundamental groups of compact Kähler manifolds, Preprint, University of Maryland.  MR 929091
[14] P.A. Griffiths. Periods of integrals on algebraic manifolds III, Publ. Math. I.H.E.S. 38 (1970), 125-180.
Numdam |  MR 282990 |  Zbl 0212.53503
[15] A. Grothendieck. Techniques de construction et théorèmes d'existence en géométrie algébrique,IV : les schémas de Hilbert. Séminaire Bourbaki, Exposé 221 (1960-61).
Numdam |  Zbl 0236.14003
[16] R.S. Hamilton. Harmonic mappings of riemannian manifolds, Lecture Notes in math. 471 (1975) Springer.  Zbl 0308.35003
[17] R. Hartshorne. Algebraic geometry, Springer (1977).  MR 463157 |  Zbl 0367.14001
[18] A. Hirschowitz. Sur la restriction des faisceaux semi-stables , Ann. Sc. Ec. Norm. Sup. 14 (1980), 199-207.
Numdam |  MR 631750 |  Zbl 0474.14007
[19] N.J. Hitchin. The self-duality equations on a Riemann surface, Proc. London, Math. Soc.(3)55 (1987), 59-126.  MR 887284 |  Zbl 0634.53045
[20] N.J. Hitchin. Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
Article |  MR 885778 |  Zbl 0627.14024
[21] M. Lübke. Chern classen von Hermite-Einstein-Vecktorbündeln, Math. Annalen 260 (1982), 133-141  MR 664372 |  Zbl 0471.53043
[22] C. Margerin. Fibrés stables et métriques d'Hermite-Einstein, d'après S.K. Donaldson, K.K. Uhlenbeck et S. T. Yau, Séminaire Bourbaki, Exposé 683 (1987).
Numdam |  MR 936859 |  Zbl 0637.53080
[23] M. Maruyama. On boundedness of families of torsion free sheaves, J. Math. Kyoto University 21-4 (1981), 673-701.
Article |  MR 637512 |  Zbl 0495.14009
[24] M. Maruyama. Moduli of stable sheaves, J. Math. Kyoto University, I 17-1 (1977) 91-126; II 18-3 (1978) 557-614.
Article |  Zbl 0395.14006
[25] V.B. Mehta et A. Ramanathan. Semistable sheaves on projective varieties and their restriction to curves, Math. Annalen 258 (1982), 213-224  MR 649194 |  Zbl 0473.14001
[26] V.B. Mehta et A. Ramanathan. Restriction of stable sheaves and representation of the fundamental group, Invent. math. 77 (1984), 163-172  MR 751136 |  Zbl 0525.55012
[27] D. Mumford et J. Fogarty. Geometric invariant theory, Springer (1982).  MR 719371 |  Zbl 0504.14008
[28] M.S. Narasimhan et C.S. Seshadri. Stable and unitary vector bundles on compact Riemann surfaces, Ann. of maths 82 (1965), 540-567.  MR 184252 |  Zbl 0171.04803
[29] C.T. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, Journal of the Amer. Math. Soc. 1 (1988), 867-918.  MR 944577 |  Zbl 0669.58008
[30] C.T. Simpson. Higgs bundles and local systems, Preprint, Princeton University.  MR 1179076
[31] C.T. Simpson. Moduli of representations of the fundamental group of a smooth variety, Preprint, Princeton University.
[32] C.T. Simpson. Non abelian Hodge theory, Preprint, Princeton University.
[33] C.T. Simpson. The ubiquity of variations of Hodge structures, Preprint, Princeton University.  MR 1141208
[34] C.T. Simpson. Harmonic bundles on non compact curves, Preprint, Princeton University.
[35] C.T. Simpson. Report on twistor space and the mixed Hodge structure on the fundamental group, Preprint, Princeton University.
[36] K.K. Uhlenbeck et S.T. Yau. On the existence of hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. 39-S (1986), 257-293.  MR 861491 |  Zbl 0615.58045
[37] A. Weil. Variétés kählériennes, Paris, Hermann (1958).  MR 111056 |  Zbl 0137.41103
Copyright Cellule MathDoc 2014 | Credit | Site Map