@article{RSMUP_2013__130__155_0,
author = {Caselles, V. and Jalalzai, K. and Novaga, M.},
title = {On the jump set of solutions of the total variation flow},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {155--168},
year = {2013},
publisher = {Seminario Matematico of the University of Padua},
volume = {130},
mrnumber = {3148636},
zbl = {1284.49043},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2013__130__155_0/}
}
TY - JOUR AU - Caselles, V. AU - Jalalzai, K. AU - Novaga, M. TI - On the jump set of solutions of the total variation flow JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2013 SP - 155 EP - 168 VL - 130 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2013__130__155_0/ LA - en ID - RSMUP_2013__130__155_0 ER -
%0 Journal Article %A Caselles, V. %A Jalalzai, K. %A Novaga, M. %T On the jump set of solutions of the total variation flow %J Rendiconti del Seminario Matematico della Università di Padova %D 2013 %P 155-168 %V 130 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2013__130__155_0/ %G en %F RSMUP_2013__130__155_0
Caselles, V.; Jalalzai, K.; Novaga, M. On the jump set of solutions of the total variation flow. Rendiconti del Seminario Matematico della Università di Padova, Tome 130 (2013), pp. 155-168. https://www.numdam.org/item/RSMUP_2013__130__155_0/
[1] - - , A characterization of convex calibrable sets in . Math. Ann., 332 (2) (2005), pp. 329-366. | MR
[2] , Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Scuola Normale Superiore, Pisa, 1997. | MR
[3] - - , Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs XVIII, Clarendon Press, 2000. | MR
[4] - - - , Minimizing total variation flow. Differential Integral Equations, 14 (3) (2001), pp. 321-360. | MR
[5] - - - , The Dirichlet problem for the total variation flow. Journal Functional Analysis, 180 (2001), pp. 347-403. | MR
[6] - - , Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Birkhaüser Verlag, 2004. | MR
[7] , Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl., 135 (1983), pp. 293-318. | MR
[8] - - , The total variation flow in . J. Differential Equations, 184 (2) (2002), pp. 475-525. | MR
[9] , Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. | MR
[10] - - , The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale modeling & simulation, 6 (3) (2007), pp. 879-894. | MR
[11] - - , Total Variation in Imaging. Handbook of Mathematical Methods in Imaging, Springer Verlag, 2010, pp. 1016-1057.
[12] - - - - , An introduction to Total Variation for Image Analysis. In Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyter, Radon Series Comp. Appl. Math., vol. 9 (2010), pp. 263-340. | MR
[13] - - , Regularity for solutions of the total variation denoising problem. Rev. Mat. Iberoamericana, 27 (1) (2011), pp. 233-252. | MR
[14] - , Image recovery via total variation minimization and related problems. Numer. Math., 76 (1997), pp. 167-188. | MR
[15] , An algorithm for mean curvature motion. Interfaces Free Bound., 6 (2) (2004), pp. 195-218. | MR
[16] - - , A nonlinear primal-dual method for total variation based image restoration. SIAM J. Sci. Computing, 20 (1999), pp. 1964-1977. | MR
[17] - , Generation of Semigroups of Nonlinear Transformations on General Banach Spaces, Amer. J. Math., 93 (1971), pp. 265-298. | MR
[18] , Regularization of inverse problems in image processing. PhD Thesis, École Polytechnique, Palaiseau, Mars 2012.
[19] - - , Nonlinear total variation based noise removal algorithms. Physica D, 60 (1992), pp. 259-268.
[20] , Weakly Differentiable Functions, GTM 120, Springer Verlag, 1989. | MR






