Ortega-Torres, Elva; Rojas-Medar, Marko
On the regularity for solutions of the micropolar fluid equations
Rendiconti del Seminario Matematico della Università di Padova, Tome 122 (2009) , p. 27-37
Zbl pre05663004 | MR 2582828
URL stable : http://www.numdam.org/item?id=RSMUP_2009__122__27_0

Bibliographie

[1] H. Beirão Da Veiga, A new regularity class for the Navier-Stokes equations in Rn , Chin. Ann. of Math., 16B, 4 (1995), pp. 1-6. Zbl 0837.35111

[2] H. Beirão Da Veiga, Concerning the regularity of the solutions to the NavierStokes equations via the truncation method Part II, In Equations aux dérivées partielles et applications Gauthier-Villars Éd. Sci. Méd. Elsevier (Paris 1998), pp. 127-138. MR 1648218 | Zbl 0927.35077

[3] H. Beirão Da Veiga, A Sufficient condition on the pressure for the regularity of weak Solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), pp. 99-106. MR 1765772 | Zbl 0970.35105

[4] H. Beirão Da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), pp. 149-166. MR 876996 | Zbl 0601.35093

[5] L. Berselli, Sufficient conditions for the regularity of the solutions of the Navier-Stokes Equations, Math. Meth. Appl. Sci., 22 (1999), pp. 1079-1085. MR 1706110 | Zbl 0940.35159

[6] D. Chae- J. Lee, Regularity criterion intermsofpressure for theNavier-Stokes equations,NonlinearAnal.,46,no.5,Ser.A:TheoryMethods(2001),pp.727-735. MR 1857154 | Zbl 1007.35064

[7] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), pp. 1-8. MR 204005

[8] Y. Giya - T. Miyakawa, Solutions in Lr to the Navier-Stokes initial value problem, Arch. Rat. Mech. Anal., 89 (1985), pp. 267-281. MR 786550 | Zbl 0587.35078

[9] J. G. Heywood - O. D. Walsh, A counter-example concerning the pressure in the Navier-Stokes, as t 3 0‡ , Pacific J. Math., 164 (1994), pp. 351-359. MR 1272655 | Zbl 0808.35101

[10] S. Kaniel, A sufficient conditions for smoothness of solutions of NavierStokes equations, Israel J. Math., 6 (1968), pp. 354-358. MR 244651 | Zbl 0174.15003

[11] S. Kaniel - M. Shinbrot, Smoothness of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 24 (1967), pp. 302-324. MR 214938 | Zbl 0152.44902

[12] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second edition, Gordon and Breach (New York 1969). MR 254401 | Zbl 0184.52603

[13] G. Lukaszewicz, On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids, Rend. Accad. Naz. Sci. XL, Mem. Math., 107 (vol. XIII) (1989), pp. 105-120. MR 1041744 | Zbl 0692.76020

[14] G. Lukaszewicz, Micropolar fluids: theory and applications, Birkhäuser (Berlin 1998). MR 1711268 | Zbl 0923.76003

[15] K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J., 36 (1984), pp. 623-646. MR 767409 | Zbl 0568.35077

[16] M. O'Leray, Pressure conditions for the local regularity of solutions of the Navier-Stokes equations, EJDE, 1998 (1998), pp. 1-9. Zbl 0912.35123

[17] E. Ortega-Torres - M. A. Rojas-Medar, On the uniqueness and regularity of the weak solutions for magneto-micropolar equations, Rev. Mat. Apl., 17 (1996), pp. 75-90. MR 1413483 | Zbl 0862.76097

[18] M. A. Rojas-Medar - J. L. Boldrini, Magneto-micropolar fluid motion: existence of weak solution, Rev. Mat. Univ. Complutense de Madrid., Vol. 11, 2 (1998), pp. 443-460. MR 1666509 | Zbl 0918.35114

[19] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), pp. 187-195. MR 136885 | Zbl 0106.18302

[20] H. Sohr, The Navier-Stokes equations, a elementary functional analytic approach, Birkhäuser (Berlin 2001). MR 1928881 | Zbl 0983.35004

[21] R. Temam, Navier-Stokes equations, theory and numerical analysis, North - Holland (2nd Revised Edition) (Amsterdam 1979). MR 603444 | Zbl 0426.35003

[22] W. Von Whalh, Regularity question for the Navier-Stokes equations, in: R. Rautmann ed., Approximations Methods for the Navier-Stokes Problems, Lectures and Notes in Mathematics, 771 (Springer-Verlag, Berlin 1980), pp. 538-542. MR 566019 | Zbl 0451.35051

[23] N. Yamaguchi, Existence of global solution to the micropolar fluid system in a bounded domain, Math. Method Appl. Sci., 28 (2005), pp. 1507-1526. MR 2158216 | Zbl 1078.35096