Bleybel, Ali
Cell decomposition for two dimensional local fields
Rendiconti del Seminario Matematico della Università di Padova, Tome 117 (2007) , p. 51-67
Zbl pre05214475 | MR 2351785
URL stable : http://www.numdam.org/item?id=RSMUP_2007__117__51_0

Bibliographie

[1] R. Cluckers - F. Loeser, Constructible motivic functions and motivic integration, preprint, math. arxiv 2004. MR 2403394 | Zbl pre05288756

[2] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), pp. 1-23. MR 751129 | Zbl 0537.12011

[3] J. Denef, p-adic semi-algebraic sets and cell decomposition, J. reine angew. Math. 369 (1986), pp. 154-166. MR 850632 | Zbl 0584.12015

[4] I. Fesenko, Measure, integration and elements of harmonic analysis on generalized loop spaces, www.maths.nott.ac.uk/personal/ibf/aoh.pdf, 2003. MR 2276855 | Zbl pre05620992

[5] E. Hrushovski - D. Kazhdan, Integration in valued fields, preprint, math.arxiv 2005. MR 2263194 | Zbl 1136.03025

[6] J. Igusa, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14. International Press, Cambridge, MA, 2000. MR 1743467 | Zbl 0959.11047

[7] A. Macintyre On definable subsets of p-adic fields, J. Symb. Logic 41 (1976), pp. 605-610. MR 485335 | Zbl 0362.02046

[8] J. Pas, Uniform p-adic cell decomposition and local zeta functions, J. Reine Angew. math., 399 (1989), pp. 137-172. MR 1004136 | Zbl 0666.12014

[9] P. Scowcroft - L. Van Den Dries, On the structure of semialgebraic sets over p-adic fields, J. Symbolic Logic, 53 (1988), pp. 1138-1164. MR 973105 | Zbl 0692.14014