Labs, Oliver
A septic with 99 real nodes
Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006) , p. 299-313
Zbl 1112.14043 | MR 2287352
URL stable : http://www.numdam.org/item?id=RSMUP_2006__116__299_0

Bibliographie

[1] W. Barth, Two Projective Surfaces with Many Nodes, Admitting the Symmetry of the Icosahedron, J. Algebraic Geom., 5, 1 (1996), pp. 173-186. MR 1358040 | Zbl 0860.14032

[2] S. W. Chmutov, Examples of Projective Surface with Many Singularities, J. Algebraic Geom., 1, 2 (1992), pp. 191-196. MR 1144435 | Zbl 0785.14020

[3] S. Endrass, Simmetrische Flächen mit vielen gewöhnlichen Doppelpunkten, Ph.D. thesis, Fr.-A.-Universität Erlangen-Nürnberg, 1996.

[4] S. Endrass, A Projective Surface of Degree Eight with 168 Nodes, J. Algebraic Geom., 6, 2 (1997), pp. 325-334. MR 1489118 | Zbl 0957.14022

[5] S. Endrass, SURF 1.0.3, http://surf.sourceforge.net, 2001, A Computer Software for Visualising Real Algebraic Geometry.

[6] A. B. Givental, Maximum number of singular points on a projective hypersurface, Funct. Anal. Appl., 17 (1984), pp. 223-225. MR 714227 | Zbl 0529.14022

[7] G.-M. Greuel - G. Pfister, A Singular Introduction to Commutative Algebra, Springer-Verlag Berlin Heidelberg, 2002. MR 1930604 | Zbl 1023.13001

[8] G.-M. Greuel - G. Pfister - H. Schönemann, SINGULAR 2.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, Univ. Kaiserslautern, 2001, http://www.singular.uni.kl.de

[9] S. Holzer - O. Labs - R. Morris, SURFEX - Visualization of Real Algebraic Surfaces, www.surfex.AlgebraicSurface.net, 2005.

[10] E. Kummer, Über die Flächen vierten Grades mit sechzehn singulären Punkten, Collected Papers, vol. 2, Springer-Verlag (1975), pp. 418-432.

[11] O. Labs, Algebraic Surface Homepage. Information, Images and Tools on Algebraic Surfaces, www.AlgebraicSurface.net, 2003.

[12] O. Labs, A Sextic with 35 Cusps, Preprint, math.AG/0502520, 2005.

[13] O. Labs, Hypersurfaces with Many Singularities, Ph.D. thesis, Johannes Gutenberg Universität Mainz, 2005, available from www.OliverLabs.net

[14] Y. Miyaoka, The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants, Math. Ann., 268 (1984), pp. 159-171. MR 744605 | Zbl 0521.14013

[15] K. Rohn, Die Flächen vierter Ordnung hinsichtlich ihrer Knotenpunkte und ihrer Gestaltung, Preisschriften der Fürstlich Jablonowski'schen Gesellschaft, no. IX, Leipzig, 1886. JFM 19.0807.02

[16] A. Sarti, Pencils of symmetric surfaces in P3 , J. Algebra, 246, 1 (2001), pp. 429-452. MR 1872630 | Zbl 1064.14038

[17] L. Schläfli, On the Distribution of Surfaces of the Third Order into Species, in Reference to the Presence or Absence of Singular Points and the Reality of their Lines, Philos. Trans. Royal Soc., CLIII (1863), 193-241.

[18] A. N. Varchenko, On the Semicontinuity of the Spectrum and an Upper Bound for the Number of Singular Points of a Projective Hypersurface, J. Soviet Math. 270, (1983), 735-739. MR 712934 | Zbl 0537.14003

[19] J.-G. Yang, Enumeration of Combinations of Rational Double Points on Quartic Surfaces, AMS/IP Studies in Advanced Mathematics, 5 (1997), pp. 275-312. MR 1468283 | Zbl 0921.14023