@article{RSMUP_1999__102__241_0,
author = {Aregba-Driollet, D. and Mercier, J.-M.},
title = {Convergence of numerical algorithms for semilinear hyperbolic system},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {241--283},
year = {1999},
publisher = {Seminario Matematico of the University of Padua},
volume = {102},
mrnumber = {1739542},
zbl = {0947.65099},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1999__102__241_0/}
}
TY - JOUR AU - Aregba-Driollet, D. AU - Mercier, J.-M. TI - Convergence of numerical algorithms for semilinear hyperbolic system JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1999 SP - 241 EP - 283 VL - 102 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1999__102__241_0/ LA - en ID - RSMUP_1999__102__241_0 ER -
%0 Journal Article %A Aregba-Driollet, D. %A Mercier, J.-M. %T Convergence of numerical algorithms for semilinear hyperbolic system %J Rendiconti del Seminario Matematico della Università di Padova %D 1999 %P 241-283 %V 102 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1999__102__241_0/ %G en %F RSMUP_1999__102__241_0
Aregba-Driollet, D.; Mercier, J.-M. Convergence of numerical algorithms for semilinear hyperbolic system. Rendiconti del Seminario Matematico della Università di Padova, Tome 102 (1999), pp. 241-283. https://www.numdam.org/item/RSMUP_1999__102__241_0/
[1] , The blow up curve for a semilinear hyperbolic system, preprint 95008 Mathématiques Appliquées de Bordeaux (1995).
[2] - , Cauchy problem for one-dimensional semilinear hyperbolic systems: global existence, blow up, J. Differential Equations, 125 (1996), pp. 1-26. | Zbl | MR
[3] , Existence globale à données de pour les modèles discrets de l'équation de Boltzmann, Comm. in partial differential equations, 16 (1991). | Zbl | MR
[4] - A. FRIEDMAN, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), pp. 223-241. | Zbl | MR
[5] - - , Uniformly accurate schemes for hyperbolic systems with relaxation. Technical report, Università dell'Aquila (1994).
[6] - - , Theoritical and numerical aspects of some semilinear hyperbolic problems, Calcolo (1994), pp. 337-354. | Zbl | MR
[7] - - - , Product formulas and numerical algorithms, CPAM, 31 (1978), p. 205-256. | Zbl | MR
[8] - , Systèmes hyperboliques semi-linéaires conservatifs 1-d, C.R. Acad. Sc. Paris, 307, serie I (1988), pp. 231-234. | Zbl | MR
[9] - , Approximating the Broadwell model in a strip, Math. Models and Methods in Appl. Sci., 2 (1992), pp. 1-19. | Zbl | MR
[10] , Nonlinear equations of evolution in banach spaces, Proc. Sympos. Pure Math., 45 (2) (1986), pp. 9-23. | Zbl | MR
[11] - A. REIMAN - A. BERS, Space-time evolution of nonlinear three-wave interaction. 1. interaction in a homogeneous medium, Reviews of Modern Physics, 51 (1979). | MR
[12] , Compressible fluid flow and systems of conservation laws in several space variables, Springer Verlag, New York (1984). | Zbl | MR
[13] , Sur des Systèmes d'équations des ondes semi-linéaires. PhD thesis, université Bordeaux, 1 (1996).
[14] , Global existence and long time estimation for an integrodifferential system, Preprint dell' universita di Pisa 2.275.1047, to be published in Ricerche di Matematica (1997). | Zbl
[15] , Note over a multigrid adaptive mesh refinement technique for hyperbolic problems, preprint SISSA 53/98/M (1998).
[16] - B. RUBINO, A discrete approximation for hyperbolic systems with quadratic interaction term, Comm. Appl. Nonlinear Anal., 3 (1996), pp. 1-21. | Zbl | MR
[17] - , Numerical solution of a nonlinear wave equation in polar coordinates, Appl. Math. Comput., 14 (1984), pp. 313-329. | Zbl | MR
[18] - , Numerical solution of a non-linear equation, J. Comput. Phys., 28 (1978), pp. 271-278. | Zbl | MR
[19] , Some existence theorems for semilinear hyperbolic systems in one space variable, Technical Report 2164, University of Wisconsin-Madison (1981).
[20] , Sur la résolution exacte et approchée d'un problème hyperbolique non-linéaire de T. Carleman, Arch. Rational Mech. Anal., 35 (1969), pp. 351-362. | Zbl | MR





