@article{RSMUP_1998__99__219_0,
author = {Amadori, Debora and Colombo, Rinaldo M.},
title = {Viscosity solutions and standard {Riemann} semigroup for conservation laws with boundary},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {219--245},
year = {1998},
publisher = {Seminario Matematico of the University of Padua},
volume = {99},
mrnumber = {1636611},
zbl = {0910.35078},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1998__99__219_0/}
}
TY - JOUR AU - Amadori, Debora AU - Colombo, Rinaldo M. TI - Viscosity solutions and standard Riemann semigroup for conservation laws with boundary JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 219 EP - 245 VL - 99 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1998__99__219_0/ LA - en ID - RSMUP_1998__99__219_0 ER -
%0 Journal Article %A Amadori, Debora %A Colombo, Rinaldo M. %T Viscosity solutions and standard Riemann semigroup for conservation laws with boundary %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 219-245 %V 99 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1998__99__219_0/ %G en %F RSMUP_1998__99__219_0
Amadori, Debora; Colombo, Rinaldo M. Viscosity solutions and standard Riemann semigroup for conservation laws with boundary. Rendiconti del Seminario Matematico della Università di Padova, Tome 99 (1998), pp. 219-245. https://www.numdam.org/item/RSMUP_1998__99__219_0/
[1] , Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA, 4 (1997), pp. 1-42. | Zbl | MR
[2] - R. M. COLOMBO, Continuous dependence for 2 x 2 conservation laws with boundary, J. Differential Equations, 138 (1997), no. 2, pp. 229-266. | Zbl | MR
[3] , Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), pp. 414-432. | Zbl | MR
[4] , Lecture notes on systems of conservation laws, S.I.S.S.A., Trieste (1994).
[5] , The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), pp. 205-230. | Zbl | MR
[6] , The semigroup approach to systems of conservation laws, Matematica Contemporanea, 10 (1996), pp. 21-74. | Zbl | MR
[7] - , The semigroup generated by 2 x 2 systems of conservation laws, Arch. Rational Mech. Anal., 133 (1996), pp. 1-75. | Zbl | MR
[8] - , Unique solutions of 2 x 2 conservation laws with large data, Indiana Univ. Math. J., 44 (1995), pp. 677-725. | Zbl | MR
[9] - - , Well-posedness of the Cauchy problem for n x n systems of conservation laws, Preprint S.I.S.S.A. 1996.
[10] , Uniqueness and continuous dependence for 2 × 2 conservation laws, Ph.D. Thesis, S.I.S.S.A. (1995).
[11] - , Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), pp. 93-122. | Zbl | MR
[12] , Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), pp. 697-715. | Zbl | MR
[13] , Initial Boundary Value Problems for Hyperbolic Systems of Conservation Laws, Ph. D. Thesis, California University (1982).
[14] , Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), pp. 537-567. | Zbl | MR
[15] , Méthode de Glimm et problème mixte, Ann. Inst. Henri Poincaré, 10, no. 4 (1993), pp. 423-443. | Zbl | MR | Numdam
[16] and Equations, Springer-Verlag, New York (1983). | Zbl | MR






