Beirão da Veiga, H.
Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow
Rendiconti del Seminario Matematico della Università di Padova, Tome 79 (1988) , p. 247-273
Zbl 0709.35082 | MR 964034 | 4 citations dans Numdam
URL stable : http://www.numdam.org/item?id=RSMUP_1988__79__247_0

Bibliographie

[1] C. Bardos - D. BREZIS - H. BREZIS, Perturbations singulières et prolongements maximaux d'opérateurs positifs, Arch. Rat. Mech. Analysis, 53 (1973), pp. 69-100. MR 348247 | Zbl 0281.47028

[2] C. Bardos - J. RAUCH, Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc., 270 (1982), pp. 377-408. MR 645322 | Zbl 0485.35010

[3] H. Beirão Da Veiga, On an Euler type equation in Hydrodynamics, Ann. Mat. Pura Appl., 125 (1980), pp. 279-295. MR 605211 | Zbl 0576.76010

[4] H. Beirão Da Veiga - A. Valli, Existence of C∞ solutions of the Euler equations for non-homogeneous fluids, Comm. Partial Diff. Eq., 5 (1980), pp. 95-107. Zbl 0437.35059

[5] H. Beirão Da Veiga, Homogeneous and non-homogeneous boundary value problems for first order linear hyperbolic systems arising in fluid mechanics, Comm. in Partial Differential Equations, part I: 7 (1982), pp. 1135-1149; part II: 8 (1983), pp. 407-432. Zbl 0503.35052

[6] H. Beirão Da Veiga, An Lp-theory for the n-dimensional, stationary, compressible, Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys., 109 (1987), pp. 229-248. MR 880415 | Zbl 0621.76074

[7] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara, 32 (1986), pp. 79-91. MR 901589 | Zbl 0641.35006

[8] H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation, U.T.M. 203, June 1986, Univ. Trento, to appear in the volume dedicated by « Ricerche di Matematica », to the memory of Professor C. Miranda. MR 956025 | Zbl 0691.35087

[9] H. Beirão Da Veiga, Kato's perturbation theory and well-posedness for the Euler equations in bounded domains, Arch. Rat. Mech. Anal., to appear. Zbl 0672.35044

[10] J.P. Bourguignon - H. Brezis, Remarks on the Euler equation, J. Funct. Analysis, 15 (1974), pp. 341-363. MR 344713 | Zbl 0279.58005

[11] D.G. Ebin - J. E. MARSDEN, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), pp. 102-163. MR 271984 | Zbl 0211.57401

[12] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), pp. 333-418. MR 100718 | Zbl 0083.31802

[13] D. Fujiwara - H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 685-700. MR 492980 | Zbl 0386.35038

[14] T. Kato, Linear evolution equations of « hyperbolic » type, J. Fac. Sci. Univ. Tokyo, 17 (1970), pp. 241-258. MR 279626 | Zbl 0222.47011

[15] T. Kato, Linear evolution equations of « hyperbolic » type II, J. Math. Soc. Japan, 25 (1973), pp. 648-666. MR 326483 | Zbl 0262.34048

[16] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in « Spectral theory and differential equations », Lecture Notes in Mathematics, vol. 448, Springer-Verlag (1975). MR 407477 | Zbl 0315.35077

[17] T. Kato - C. Y. LAI, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. MR 735703 | Zbl 0545.76007

[18] R.V. Kohn - B.D. Lowe, A variational method for parameter identification, to appear. Numdam | MR 934704 | Zbl 0636.65127

[19] P.D. Lax - R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., 13 (1960), pp. 427-455. MR 118949 | Zbl 0094.07502

[20] A. Majda - S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), pp. 607-675. MR 410107 | Zbl 0314.35061

[21] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), pp. 167-187. MR 797053 | Zbl 0549.35099

[22] J. Rauch - F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), pp. 303-318. MR 340832 | Zbl 0282.35014

[23] S. Schochet, Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation, to appear. MR 891336 | Zbl 0633.35047

[24] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Analysis, 20 (1975), pp. 32-43. Zbl 0309.35061

[25] H. Beirão Da Veiga, An well-posedness theorem for nonhomogeneous inviscid fluids via a perturbation theorem, to appear. Zbl 0682.35012