Marzantowicz, Wacław; Parusiński, Adam
Periodic solutions near an equilibrium of a differential equation with a first integral
Rendiconti del Seminario Matematico della Università di Padova, Tome 77 (1987) , p. 193-206
Zbl 0651.34040
URL stable : http://www.numdam.org/item?id=RSMUP_1987__77__193_0

Bibliographie

[1] J. Alexander - J. Yorke, Global bifurcation of periodic orbits, Amer. J. Math., 100 (1978), pp. 263-292. MR 474406 | Zbl 0386.34040

[2] S. Chow - J. MALLET-PARET - J. YORKE, Global Hopf bifurcation from multiple eigenvalue, Nonlinear Anal., 2 (1978), pp. 753-763. MR 512165 | Zbl 0407.47039

[3] N. Dancer, A new degree for S1-invariant gradient mappings and applications, notes.

[4] E. Fadell - P. RABINOWITZ, Generalized cohomological index theories for Lie group action with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), pp. 139-174. MR 478189 | Zbl 0403.57001

[5] J. Ize, Obstruction theory and multiparameter Hopf bifurcation, Inst. Mat. Applic. Sis. UNAM, Mexico, No. 322 (1982).

[6] W. Marzantowicz, Periodic solutions near an equilibrium of a differential equation with a first integral, SISSA, Trieste, Preprint No. 45/84/M (1984).

[7] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29 (1976), pp. 727-746. MR 426052 | Zbl 0346.34024

[8] D. Schmidt, Hopf bifurcation and the center theorem of Liapunov with resonance cases, J. Math. Anal. Appl., 63 (1978), pp. 354-370. MR 477298 | Zbl 0383.34026

[9] A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), pp. 47-57. MR 328222 | Zbl 0264.70020