Salvadori, L.; Visentin, F.
Sul problema della biforcazione generalizzata di Hopf per sistemi periodici
Rendiconti del Seminario Matematico della Università di Padova, Tome 68 (1982) , p. 129-147
Zbl 0524.34046 | MR 702152
URL stable : http://www.numdam.org/item?id=RSMUP_1982__68__129_0

Bibliographie

[1] A. Andronov - E. Leontovich - I. Gordon - A. Maier, Theory of bifurcations of dynamical systems in the plane, Israel Program of Scientifie Translations, Jerusalem (1973).

[2] S.R. Bernfeld - P. Negrini - L. Salvadori, Qnasi-invariant manifolds, stability and generalized Hopf bifureation, Ann. Mat. Pura e Appl., in corso di stampa. Zbl 0493.34030

[3] N. Chafee, Generalized Hopf bifurcation and perturbations in a full neighborhood of a given vector field, Indiana Univ. Math. J., 27 (1978). MR 488150 | Zbl 0366.34037

[4] J.C. De Oliveira - J.K. Hale, Dynamic behavior from bifurcation equations, Tohoku Math., Zbl 0454.34035

[5] J.K. Hale, Stability from the bifurcation function, Proc. Midwest Seminar on Differential Equations, Okla, St. Univ. (Oct. 1979). MR 580781 | Zbl 0588.34043

[6] A.M. Liapunov, Probleme général de la stabilité du mouvement, Ann. of Math. Studies, 17, Princeton Univ. Press, New Jersey (1947). MR 21186 | Zbl 0031.18403

[7] V. Moauro, Bifurcation of closed orbits from a limit cycle in R2, Rend. Seminario Matematico, Univ. Padova, 65 (1981). Numdam | MR 653301 | Zbl 0486.34025

[8] L. Salvadori - F. Visentin, Perturbed dynamical systems: displacement and bifurcation functions, J. Math. Anal. and Appl., 87 (1982), p. 1. MR 653617 | Zbl 0489.34055