@article{RSMUP_1981__65__119_0,
author = {Unterholzner, Paola},
title = {Algebraic and relational semantics for tense logics},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {119--128},
year = {1981},
publisher = {Seminario Matematico of the University of Padua},
volume = {65},
mrnumber = {653288},
zbl = {0482.03006},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1981__65__119_0/}
}
TY - JOUR AU - Unterholzner, Paola TI - Algebraic and relational semantics for tense logics JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1981 SP - 119 EP - 128 VL - 65 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1981__65__119_0/ LA - en ID - RSMUP_1981__65__119_0 ER -
%0 Journal Article %A Unterholzner, Paola %T Algebraic and relational semantics for tense logics %J Rendiconti del Seminario Matematico della Università di Padova %D 1981 %P 119-128 %V 65 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_1981__65__119_0/ %G en %F RSMUP_1981__65__119_0
Unterholzner, Paola. Algebraic and relational semantics for tense logics. Rendiconti del Seminario Matematico della Università di Padova, Tome 65 (1981), pp. 119-128. https://www.numdam.org/item/RSMUP_1981__65__119_0/
[1] - , Distributive lattices, University of Missouri Press, 1974. | Zbl | MR
[2] , The unprovability of consistency. An essay in modal logic, Cambridge University Press, 1979. | Zbl | MR
[3] , Universal Algebra, Van Nostrand, 1968. | Zbl | MR
[4] - , Boolean algebras with operators, Amer. J. Math., 73 (1951), ppM891-939. | Zbl
[5] , 3 Klassische und Nichtklassische Aussagenlogik, Vieweg, 1979. | Zbl | MR
[6] , Completeness and correspondence in the first and second order semantics for modal logic, Proceedings of the Third Scandinavian Logic Symposium, ed. S. Kanger, North Holland, 1975, pp. 110-143. | Zbl | MR
[7] , Topology and categorical duality in the study of semantics for modal logics, submitted to J. Philos. Logic.
[8] - , A modal sequent caclculus for a fragment of arithmetic, Stud. Logica, to appear. | Zbl | MR
[9] , The derivability condition and Loeb's Theorem, a shourt course in modal logic, manuscript, Heidelberg, 1976.
[10] , Semantic analysis of tense logic, J. Symbolic Logic, 37 (1972), pp. 155-158. | Zbl | MR





