We consider the maximum weight perfectly matchable subgraph problem on a bipartite graph G=(UV,E) with respect to given nonnegative weights of its edges. We show that G has a perfect matching if and only if some vector indexed by the nodes in UV is a base of an extended polymatroid associated with a submodular function defined on the subsets of UV. The dual problem of the separation problem for the extended polymatroid is transformed to the special maximum flow problem on G. In this paper, we give a linear programming formulation for the maximum weight perfectly matchable subgraph problem and propose an O(n3) algorithm to solve it.
Keywords: bipartite graph, extended polymatroid, perfect matching, perfectly matchable subgraph
@article{RO_2010__44_1_27_0,
author = {Sharifov, Firdovsi},
title = {Perfectly matchable subgraph problem on a bipartite graph},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {27--42},
year = {2010},
publisher = {EDP Sciences},
volume = {44},
number = {1},
doi = {10.1051/ro/2010004},
mrnumber = {2642914},
zbl = {1218.05149},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2010004/}
}
TY - JOUR AU - Sharifov, Firdovsi TI - Perfectly matchable subgraph problem on a bipartite graph JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2010 SP - 27 EP - 42 VL - 44 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2010004/ DO - 10.1051/ro/2010004 LA - en ID - RO_2010__44_1_27_0 ER -
%0 Journal Article %A Sharifov, Firdovsi %T Perfectly matchable subgraph problem on a bipartite graph %J RAIRO - Operations Research - Recherche Opérationnelle %D 2010 %P 27-42 %V 44 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2010004/ %R 10.1051/ro/2010004 %G en %F RO_2010__44_1_27_0
Sharifov, Firdovsi. Perfectly matchable subgraph problem on a bipartite graph. RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 1, pp. 27-42. doi: 10.1051/ro/2010004
[1] , and , Network Flows, Theory, Algorithms and Applications. Prentice-Hall (1993). | Zbl
[2] , , and , Computing maximum cardinality matching in time . Infor. Process. Lett. 37 (1991) 237-240. | Zbl
[3] and , The perfectly matchable subgraph polytope of a bipartite graph. Networks 13 (1983) 495-516. | Zbl
[4] and , The perfectly matchable subgraph polytope of an arbitrary graph. Combinatorica 9 (1989) 321-337. | Zbl
[5] , Signature methods for the assignment problem. Oper. Res. 33 (1985) 527-536. | Zbl
[6] and , The Maximum Induced Bipartite Subgraph Problem with Edge Weight. SIAM J. Discrete Math. 3 (2007) 662-675. | Zbl
[7] and , A separation algorithm for matchable set polytope. Math. Program. 65 (1994) 139-150. | Zbl
[8] , and , Geometric algorithms and combinatorial optimization. Springer-Verlag, Berlin (1988). | Zbl
[9] , Determination of the minimum cut using the base of an extended polymatroid. Cybern. Syst. Anal. 6 (1997) 856-867 (translated from Kibernetika i Systemnyi Analis 6 (1996) 138-152, in Russian). | Zbl
Cité par Sources :





