@article{RO_1988__22_1_27_0,
author = {Campello, Ruy E. and Maculan, Nelson},
title = {An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {27--32},
year = {1988},
publisher = {EDP Sciences},
volume = {22},
number = {1},
mrnumber = {943104},
zbl = {0662.90052},
language = {en},
url = {https://www.numdam.org/item/RO_1988__22_1_27_0/}
}
TY - JOUR AU - Campello, Ruy E. AU - Maculan, Nelson TI - An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1988 SP - 27 EP - 32 VL - 22 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/RO_1988__22_1_27_0/ LA - en ID - RO_1988__22_1_27_0 ER -
%0 Journal Article %A Campello, Ruy E. %A Maculan, Nelson %T An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints %J RAIRO - Operations Research - Recherche Opérationnelle %D 1988 %P 27-32 %V 22 %N 1 %I EDP Sciences %U https://www.numdam.org/item/RO_1988__22_1_27_0/ %G en %F RO_1988__22_1_27_0
Campello, Ruy E.; Maculan, Nelson. An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints. RAIRO - Operations Research - Recherche Opérationnelle, Tome 22 (1988) no. 1, pp. 27-32. https://www.numdam.org/item/RO_1988__22_1_27_0/
1. and , A Lower Bound to the Set Partitioning Problem with Side Constraints, DRC-70-20-3, Design Research Center Report Series, Carnegie-Mellon University, Pittsburg, Pennylvania, 15213, U.S.A., 1983.
2. and , Exact Methods for the Knapsack Problem and its Generalizations, European Journal of Operational Research (EJOR), Vol. 28, No. 1, 1987, pp. 3-21. | Zbl | MR
3. , A Geometric Approach to Two-Constraint Linear Programs with Generalized Upper Bounds, Advances in Computing Research, Vol. 1, 1983, pp. 79-90, JAI Press.
4. , An O (n) Algorithm for the Multiple-Choice Knapsack Linear Program, Mathematical Programming, Vol. 29, No. 1, 1984, pp. 57-63. | Zbl | MR
5. and , A Note on the Knapsack Problem with Special Ordered Sets, Operations Research Letters, Vol 1, No. 1, 1981, pp. 18-22. | Zbl | MR
6. and , Finding the Intersection of Two Convex Polyhedra, Theoretical Computer Sciences, Vol. 7, 1978, pp. 217-238. | Zbl | MR
7. , Convex Analysis, Princeton University Press, Princeton, N.J., U.S.A., 1970. | Zbl | MR
8. , The Linear Multiple Choice Knapsack Problem, Operations Research, Vol. 28, No. 6, November-December, 1980, pp. 1412-1423. | Zbl | MR





