@article{RO_1973__7_1_3_0,
author = {Marguin, Jean and Marguinaud, Andr\'e},
title = {Calcul exact de la disponibilit\'e op\'erationnelle d'un syst\`eme complexe},
journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Recherche op\'erationnelle},
pages = {3--20},
year = {1973},
publisher = {EDP Sciences},
volume = {7},
number = {V1},
mrnumber = {351419},
zbl = {0267.90051},
language = {fr},
url = {https://www.numdam.org/item/RO_1973__7_1_3_0/}
}
TY - JOUR AU - Marguin, Jean AU - Marguinaud, André TI - Calcul exact de la disponibilité opérationnelle d'un système complexe JO - Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle PY - 1973 SP - 3 EP - 20 VL - 7 IS - V1 PB - EDP Sciences UR - https://www.numdam.org/item/RO_1973__7_1_3_0/ LA - fr ID - RO_1973__7_1_3_0 ER -
%0 Journal Article %A Marguin, Jean %A Marguinaud, André %T Calcul exact de la disponibilité opérationnelle d'un système complexe %J Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle %D 1973 %P 3-20 %V 7 %N V1 %I EDP Sciences %U https://www.numdam.org/item/RO_1973__7_1_3_0/ %G fr %F RO_1973__7_1_3_0
Marguin, Jean; Marguinaud, André. Calcul exact de la disponibilité opérationnelle d'un système complexe. Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, Tome 7 (1973) no. V1, pp. 3-20. https://www.numdam.org/item/RO_1973__7_1_3_0/
[1] et , Mathematical Theory of Reliability, John Wiley, 1965, 256 p. | Zbl | MR
[2] , Probabilistic Reliability : an Engineering Approach, McGraw-Hill 1968, 448 p. | Zbl
[3] , Mathematical Methods of Reliability Theory, Academic Press, 1969, 506 p. | Zbl | MR
[4] , Computer Aided Selection of Prior Distributions for generating Monte Carlo Confidence Bounds on System Reliability, Naval Research Logistic Quaterly, mars 1970, vol. 17 (1), pp. 41-54. | Zbl
[5] et , Solving Complex Reliability Models by Computer, Raytheon Company, paper 17-1-17-13.
[6] , Predicting maintenance Time Distribution of a Complex System A Monte Carlo Solution, 10th Annual West Coast Reliability Symposium, Beverley Hills, California, 21 february 1969, pp. 37-47.
[7] et , Availability Analysis.A Realistic Methodology Proceedings of Tenth National Symposium on Reliability and Quality Control, 1964, pp. 365-378.
[8] , Approximate System Availability Models, Proceedings 1969 Annual Symposium on Reliability, pp. 146-152.
[9] , Repair Queuing Models for System Availability, Proceedings 1970 Annual Symposium on Reliability, pp. 331-336.
[10] et , New Results in Effectiveness Prediction for Markovia Systems, Proceedings 1970 Annual Symposium on Reliability, pp. 410-419.
[11] , Markov Approach to Finding Failure Times of Repairable System, IEEE Transactions on Reliability, vol. R-19, n° 4, novembre 1970, pp. 128-134.
[12] , A statistical Mechanical Approach to Systems Analysis, IBM Journal of R and D, vol. 14 (5), septembre 1970, pp. 539-547. | Zbl | MR
[13] , A Statistical Mechanical Approach to Systems Analysis, IBM Report TR-21-348, 10 novembre 1969, 61 p.
[14] , An Analysis of the Machine Interference Model, IBM Systems Journal, vol. 10 (2), 1971, pp. 129-142.
[15] , Renewal Theory, Methuen's Monographs, 1962, 142 p. | Zbl | MR
[16] , Queues, Inventory and Maintenance. John Wiley, 1958, 202 p. | MR
[17] , A Method for Calculating eAT Based on the Cayley-Hamilton Theorem,Proc. IEEE (Letters), vol. 57, juillet 1969, pp. 1328-1329.
[18] , Evaluation of the Transition Matrix. Proc. IEEE (Letters), vol. 55, février 1967, pp. 228-229.
[19] , A Novel Method of Evaluating eAT in closed Form, IEEE Transactions on Automatic Control, vol. AC-15 (5), octobre 1970, pp. 600-601. | MR
[20] et , Elementary Matrices and Some Applications to Dynamics and Differential Equations,Cambridge University Press, 1960, p. 83. | MR
[21] , Matrix iterative Analysis, Prentice Hall, 1963, pp. 16-22. | Zbl | MR
[22] , La localisation des valeurs caractéristiques des matrices et ses applications, Gauthier-Villars, 1959, 172 p. | Zbl | MR





