Let be the empirical distribution function (df) pertaining to independent random variables with continuous df . We investigate the minimizing point of the empirical process , where is another df which differs from . If and are locally Hölder-continuous of order at a point our main result states that converges in distribution. The limit variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous Poisson-process with a drift. The time-transformation and the drift-function are of the type .
Keywords: rescaled empirical process, argmin-CMT, Poisson-process, weak convergence in $D(\mathbb {R})$
@article{PS_2005__9__307_0,
author = {Ferger, Dietmar},
title = {On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments},
journal = {ESAIM: Probability and Statistics},
pages = {307--322},
year = {2005},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/ps:2005014},
mrnumber = {2174873},
zbl = {1136.60315},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2005014/}
}
TY - JOUR AU - Ferger, Dietmar TI - On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments JO - ESAIM: Probability and Statistics PY - 2005 SP - 307 EP - 322 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2005014/ DO - 10.1051/ps:2005014 LA - en ID - PS_2005__9__307_0 ER -
%0 Journal Article %A Ferger, Dietmar %T On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments %J ESAIM: Probability and Statistics %D 2005 %P 307-322 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps:2005014/ %R 10.1051/ps:2005014 %G en %F PS_2005__9__307_0
Ferger, Dietmar. On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 307-322. doi: 10.1051/ps:2005014
[1] , Convergence of probability measures. Wiley, New York (1968). | Zbl | MR
[2] and, On some distributions related to the statistic . Ann. Math. Statist. 29 (1958) 179-187. | Zbl
[3] and, One-sided confidence contours for probability distribution functions. Ann. Math. Statist. 22 (1951) 592-596. | Zbl
[4] , Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari 4 (1933) 327-350. | Zbl
[5] , Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952) 277-281. | Zbl
[6] , Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 (1966) 109-126. | Zbl
[7] , Measures on nonseparable metric spaces. Illinois J. Math. 11 (1967) 449-453. | Zbl
[8] , Uniform central limit theorems. Cambridge University Press, New York (1999). | Zbl | MR
[9] , On several statistics related to empirical distribution functions. Ann. Math. Statist. 29 (1958) 188-191. | Zbl
[10] and, The distribution of the argmax of two-sided Brownian motion with parabolic drift. J. Statist. Comput. Simul. 63 (1999) 47-58. | Zbl
[11] , The Birnbaum-Pyke-Dwass theorem as a consequence of a simple rectangle probability. Theor. Probab. Math. Statist. 51 (1995) 155-157. | Zbl
[12] , Analysis of change-point estimators under the null hypothesis. Bernoulli 7 (2001) 487-506. | Zbl
[13] , A continuous mapping theorem for the argmax-functional in the non-unique case. Statistica Neerlandica 58 (2004) 83-96. | Zbl
[14] , Cube root asymptotics for argmin-estimators. Unpublished manuscript, Technische Universität Dresden (2005).
[15] , Sulla determinazione empirica delle leggi die probabilita. Giorn. Ist. Ital. Attuari 4 (1933) 92-99. | Zbl
[16] , Brownian motion with a parabolic drift and Airy Functions. Probab. Th. Rel. Fields 81 (1989) 79-109.
[17] and, Computing Chernov's distribution. J. Comput. Graphical Statist. 10 (2001) 388-400.
[18] , Stochastic processes on Polish spaces. (Published (1991): Various Publication Series No. 39, Matematisk Institut, Aarhus Universitet) (1984). | Zbl | MR
[19] and, Statistical Estimation: Asymptotic Theory. Springer-Verlag, New York (1981). | Zbl
[20] , Foundations of Modern Probability. Springer-Verlag, New York (1999). | Zbl | MR
[21] , Epi-convergence in distribution and stochastic equi-semicontinuity. Technical Report, University of Toronto (1999) 1-22.
[22] , Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933) 83-91. | Zbl
[23] , Alternative proof of a theorem of Birnbaum and Pyke. Ann. Math. Statist. 30 (1959) 251-252. | Zbl
[24] , Weak convergence of probability measures and random functions in the function space . J. Appl. Prob. 10 (1973) 109-121. | Zbl
[25] , The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269-1283. | Zbl
[26] , On an argmax-distribution connected to the Poisson process, in Proc. of the fifth Prague Conference on asymptotic statistics, P. Mandl, H. Husková Eds. (1993) 123-130.
[27] and, Empirical processes with applications to statistics. Wiley, New York (1986). | MR
[28] , Näherungsgesetze der Verteilung von Zufallsveränderlichen von empirischen Daten. Usp. Mat. Nauk. 10 (1944) 179-206. | Zbl
[29] , Combinatorial Methods in the theory of stochastic processes. Robert E. Krieger Publishing Company, Huntingtun, New York (1967). | Zbl
[30] and, Weak convergence of empirical processes. Springer-Verlag, New York (1996). | MR
Cité par Sources :





