This paper is concerned with the problem of simulation of , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain : namely, we consider the case where the boundary is killing, or where it is instantaneously reflecting in an oblique direction. Given discretization times equally spaced on the interval , we propose new discretization schemes: they are fully implementable and provide a weak error of order under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.
Keywords: killed diffusion, reflected diffusion, discretization schemes, rates of convergence, weak approximation, boundary value problems for parabolic PDE
@article{PS_2001__5__261_0,
author = {Gobet, Emmanuel},
title = {Euler schemes and half-space approximation for the simulation of diffusion in a domain},
journal = {ESAIM: Probability and Statistics},
pages = {261--297},
year = {2001},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1889160},
zbl = {0998.60081},
language = {en},
url = {https://www.numdam.org/item/PS_2001__5__261_0/}
}
TY - JOUR AU - Gobet, Emmanuel TI - Euler schemes and half-space approximation for the simulation of diffusion in a domain JO - ESAIM: Probability and Statistics PY - 2001 SP - 261 EP - 297 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/PS_2001__5__261_0/ LA - en ID - PS_2001__5__261_0 ER -
Gobet, Emmanuel. Euler schemes and half-space approximation for the simulation of diffusion in a domain. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 261-297. https://www.numdam.org/item/PS_2001__5__261_0/
[1] , Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab. 23 (1995) 1644-1670. | Zbl | MR
[2] , and, Pricing complex barrier options with general features using sharp large deviation estimates, edited by Niederreiter, Harald et al., Monte-Carlo and quasi-Monte-Carlo methods 1998, in Proc. of a conference held at the Claremont Graduate University. Claremont, CA, USA, June 22-26, 1998. Springer, Berlin (2000) 149-162. | Zbl | MR
[3] and, The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields 104-1 (1996) 43-60. | Zbl | MR
[4] , and, Computation of the invariant law of a reflected diffusion process (in preparation).
[5] , Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 67-112. | Zbl | MR | Numdam
[6] , Régularité au bord pour les densités et les densités conditionnelles d'une diffusion réfléchie hypoelliptique. Stochastics 20 (1987) 309-340. | Zbl
[7] , and, Numerical approximation for functionnals of reflecting diffusion processes. SIAM J. Appl. Math. 58 (1998) 73-102. | Zbl | MR
[8] ,,,,,,,,,, and, The inverse EEG and MEG problems: The adjoint state approach. I. The continuous case. Rapport de recherche INRIA No. 3673 (1999).
[9] , Functional integration and partial differential equations. Ann. of Math. Stud. Princeton University Press (1985). | Zbl | MR
[10] and, Elliptic partial differential equations of second order. Springer Verlag (1977). | Zbl | MR
[11] , Schémas d'Euler pour diffusion tuée. Application aux options barrière, Ph.D. Thesis. Université Denis Diderot Paris 7 (1998).
[12] , Euler schemes for the weak approximation of killed diffusion. Stochastic Process. Appl. 87 (2000) 167-197. | Zbl | MR
[13] , Efficient schemes for the weak approximation of reflected diffusions. Monte Carlo Methods Appl. 7 (2001) 193-202. Monte Carlo and probabilistic methods for partial differential equations. Monte Carlo (2000). | Zbl | MR
[14] , A numerical scheme using excursion theory for simulating stochastic differential equations with reflection and local time at a boundary. Monte Carlo Methods Appl. 6 (2000) 81-103. | Zbl | MR
[15] and, Strong approximation of reflecting Brownian motion using penalty method and its application to computer simulation. Monte Carlo Methods Appl. 6 (2000) 105-114. | Zbl | MR
[16] and, Applications of the Malliavin calculus I, edited by K. Itô, Stochastic Analysis, in Proc. Taniguchi Internatl. Symp. Katata and Kyoto 1982. Kinokuniya, Tokyo (1984) 271-306. | Zbl | MR
[17] , and, Linear and quasi-linear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). | Zbl
[18] , Un schéma d'Euler pour équations différentielles stochastiques réfléchies. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 601-605. | Zbl
[19] , Euler scheme for reflected stochastic differential equations. Math. Comput. Simulation 38 (1995) 119-126. | Zbl | MR
[20] and, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | Zbl | MR
[21] , Numerical approaches to reflected diffusion processes. Technical Report (1993).
[22] , Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733-744. | Zbl | MR
[23] , Application of the numerical integration of stochastic equations for the solution of boundary value problems with Neumann boundary conditions. Theory Probab. Appl. 41 (1996) 170-177. | Zbl | MR
[24] , Partial differential equations of elliptic type. Springer, New York (1970). | Zbl | MR
[25] and, Symmetric reflected diffusions. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 13-62. | Zbl | MR | Numdam
[26] , Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process. Appl. 59 (1995) 295-308. | Zbl | MR
[27] , Penalization schemes for reflecting stochastic differential equations. Bernoulli 3 (1997) 403-414. | Zbl | MR
[28] and, Continuous martingales and Brownian motion, 2nd Ed. Springer, Berlin, Grundlehren Math. Wiss. 293 (1994). | Zbl | MR
[29] , Stochastic differential equations for multi-dimensional domain with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. | Zbl | MR
[30] , The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496. | Zbl | MR
[31] , On approximation of solutions of multidimensional SDEs with reflecting boundary conditions. Stochastic Process. Appl. 50 (1994) 197-219. | Zbl | MR
[32] and, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8-4 (1990) 94-120. | Zbl | MR
[33] , Semimartingale reflecting Brownian motions in the orthant, Stochastic networks. Springer, New York (1995) 125-137. | Zbl | MR






