@article{PS_2000__4__25_0,
author = {Gassiat, Elisabeth and Keribin, Christine},
title = {The likelihood ratio test for the number of components in a mixture with {Markov} regime},
journal = {ESAIM: Probability and Statistics},
pages = {25--52},
year = {2000},
publisher = {EDP Sciences},
volume = {4},
mrnumber = {1780964},
zbl = {0982.62016},
language = {en},
url = {https://www.numdam.org/item/PS_2000__4__25_0/}
}
TY - JOUR AU - Gassiat, Elisabeth AU - Keribin, Christine TI - The likelihood ratio test for the number of components in a mixture with Markov regime JO - ESAIM: Probability and Statistics PY - 2000 SP - 25 EP - 52 VL - 4 PB - EDP Sciences UR - https://www.numdam.org/item/PS_2000__4__25_0/ LA - en ID - PS_2000__4__25_0 ER -
%0 Journal Article %A Gassiat, Elisabeth %A Keribin, Christine %T The likelihood ratio test for the number of components in a mixture with Markov regime %J ESAIM: Probability and Statistics %D 2000 %P 25-52 %V 4 %I EDP Sciences %U https://www.numdam.org/item/PS_2000__4__25_0/ %G en %F PS_2000__4__25_0
Gassiat, Elisabeth; Keribin, Christine. The likelihood ratio test for the number of components in a mixture with Markov regime. ESAIM: Probability and Statistics, Tome 4 (2000), pp. 25-52. https://www.numdam.org/item/PS_2000__4__25_0/
[1] , , , and , On the distribution of the likelihood ratio test statistic for a mixture of two normal distributions. Comm. Statist. Simulation Comput. 25 ( 1996) 733-740. | Zbl | MR
[2] and , Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 ( 1966) 1554-1563. | Zbl | MR
[3] and , Inference in hidden Markov models I: Local asymptotic normality in the stationary case. Bernoulli 2 ( 1996) 199-228. | Zbl | MR
[4] , and , Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Annals of Stat. 26 ( 1998) 614-1635. | Zbl | MR
[5] and , The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Comm. Statist. Simulation Comput. 26 ( 1997) 631-648. | Zbl | MR
[6] , Stochastic models for heterogeneous DNA sequences. Bull. Math. Biology 51 ( 1989) 79-94. | Zbl | MR
[7] , Sur le test de maximum de vraisemblance pour le mélange de populations. Note aux C.R.A.S., 328, Série I, 4 ( 1999) 351-358. | Zbl | MR
[8] and , Probabilits et statistiques, Tome 2. Masson ( 1993). | Zbl | MR
[9] and , Estimation of the number of components in a mixture. Bernoulli 3 ( 1997a) 279-299. | Zbl | MR
[10] and , Testing in locally conic models. ESAIM Probab. Statist. 1 ( 1997b). | Zbl | MR | Numdam
[11] and , Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 ( 1999) 1178-1209. | Zbl | MR
[12] , and , Large Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 ( 1977) 1-38. | Zbl | MR
[13] and , Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models ( 1999) (submitted). | Zbl
[14] , Algorithmes stochastiques. Springer ( 1996). | Zbl | MR
[15] and , Using bootstrap Likelihood Ratio in Finite Mixture Models. J. Roy. Statist. Soc. Ser. B 58 ( 1996) 609-617. | Zbl
[16] , Consistent Estimation of the Order for Markov and Hidden Markov Chains. Ph.D. Thesis, University of Maryland ( 1990).
[17] and , Maximum likelihood estimation and identification directly from single-channel recordings. Proc. Roy. Soc. London Ser. B 249 ( 1992) 125-132.
[18] and , Martingale Limit Theory and Its Application. Academic Press ( 1980). | Zbl | MR
[19] , A failure of likelihood ratio asymptotics for normal mixtures, in Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, edited by L.M. Le Cam and R.A. Olshen ( 1985) 807-810. | MR
[20] , On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 ( 1985) 235-240. | Zbl | MR
[21] and , Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 ( 1999) 514-535. | Zbl | MR
[22] , Tests de modèles par maximum de vraisemblance, Thèse de l'Université d'Evry-Val d'Essonne ( 1999).
[23] , Consistent estimation of the Order of Mixture Models ( 1997) (submitted). | Zbl
[24] , Maximum-likelihood estimation for hidden Markov models. Stochastic Process Appl. 40 ( 1992) 127-143. | Zbl | MR
[25] and , Maximum Penalized Likelihood Estimation for Independent and Markov-Dependent Mixture Models. Biometrics 48 ( 1992) 545-558.
[26] , Mixture models: Theory, Geometry and Applications ( 1995). | Zbl
[27] and , Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall ( 1997). | Zbl | MR
[28] , On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture. Appl. Statist. 36 ( 1987) 318-324.
[29] , Statistique asymptotique pour les modèles de Markov cachés. Thèse de l'Université de Rennes I ( 1997).
[30] and , Exponential forgetting and Geometrie Ergodicity in Hidden Markov models. Math. Control Signals Systems (to appear). | Zbl | MR
[31] and , Markov chains and stochastic stability. Springer-Verlag ( 1993). | Zbl | MR
[32] , A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 ( 1989) 257-284.
[33] , Estimating the order of hidden Markov models. Statistics 26 ( 1995) 345-354. | Zbl | MR
[34] , Identification de l'ordre des processus ARMA stables. Contribution à l'étude statistique des chaînes de Markov cachées. Thèse de l'Université de Montpellier II ( 1997).
[35] , Asymptotic Statistics. Cambridge Ed. ( 1999). | Zbl | MR






