@article{PS_1997__1__357_0,
author = {Picard, Jean},
title = {Density in small time for {Levy} processes},
journal = {ESAIM: Probability and Statistics},
pages = {357--389},
year = {1997},
publisher = {EDP Sciences},
volume = {1},
mrnumber = {1486930},
zbl = {0899.60065},
language = {en},
url = {https://www.numdam.org/item/PS_1997__1__357_0/}
}
Picard, Jean. Density in small time for Levy processes. ESAIM: Probability and Statistics, Tome 1 (1997), pp. 357-389. https://www.numdam.org/item/PS_1997__1__357_0/
, and ( 1987), Malliavin calculus for processes with jumps, Stochastics Monographs 2, Gordon and Breach. | Zbl | MR
( 1983), Calcul des variations stochastique et processus de sauts, Z. Wahrscheinlichkeitstheorie verw. Gebiete 63 147-235. | Zbl | MR
and ( 1984), Random perturbations of dynamical systems, Springer. | Zbl | MR
( 1993), On the lower bound of the density for jump processes in small time, Bull. Sc. Math., 2e série 117 463-483. | Zbl | MR
( 1994), Asymptotic behavior of the transition density for jump type processes in small time, Tôhoku Math. J. 46 443-456. | Zbl | MR
( 1995), Large deviation estimate of transition densities for jump processes, preprint. | MR | Numdam
( 1987), Densité en temps petit d'un processus de sauts, in: Séminaire de Probabilités XXI, Lect. N. in Math. 1247, Springer. | Zbl | MR | Numdam
( 1996), On the existence of smooth densities for jump processes, Probab. Theory Relat. Fields 105 481-511. | Zbl | MR
( 1967), Supports of convolutions of identical distributions, in: Proc. 5th Berkeley Symposium, Vol. II, Part 1, Univ. Calif. Press. | Zbl | MR
( 1962), Absolute continuity of infinitely divisible distributions, Pacific J. Math. 12 1125-1129. | Zbl | MR
( 1965), On a necessary and sufficient condition that an infinitely divisible distribution be absolutely continuous, Transactions A. M. S. 118 316-330. | Zbl | MR
( 1994), Absolute continuity of transition probabilities of multidimensional processes with stationary independent increments, Theory Prob. 39 347-354. | Zbl | MR





