Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article | Next article
Atiyah, Michael F.
Topological quantum field theory. Publications Mathématiques de l'IHÉS, 68 (1988), p. 175-186
Full text djvu | pdf | Reviews MR 90e:57059 | Zbl 0692.53053 | 8 citations in Numdam

stable URL: http://www.numdam.org/item?id=PMIHES_1988__68__175_0

Bibliography

[1] M. F. ATIYAH, New invariants of three and four dimensional manifolds, in The Mathematical Heritage of Herman Weyl, Proc. Symp. Pure Math., 48, American Math. Soc. (1988), 285-299.  MR 89m:57034 |  Zbl 0667.57018
[2] S. K. DONALDSON, Polynomial invariants for smooth four-manifolds, to appear in Topology.  Zbl 0715.57007
[3] A. FLOER, Morse theory for fixed points of symplectic diffeomorphisms, Bull. A.M.S., 16 (1987), 279-281.
Article |  MR 88b:58024 |  Zbl 0617.53042
[4] A. FLOER, An instanton invariant for three manifolds, Courant Institute preprint, to appear.  Zbl 0684.53027
[5] M. GROMOV, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347.  MR 87j:53053 |  Zbl 0592.53025
[6] N. J. HITCHIN, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987), 59-126.  MR 89a:32021 |  Zbl 0634.53045
[7] D. JOHNSON, A geometric form of Casson's invariant and its connection with Reidemeister torsion, unpublished lecture notes.
[8] V. F. R. JONES, Hecke algebra representations of braid groups and link polynomials, Ann. of Math., 126 (1987), 335-388.  MR 89c:46092 |  Zbl 0631.57005
[9] A. PRESSLEY and G. B. SEGAL, Loop Groups, Oxford University Press (1988).  Zbl 0638.22009
[10] G. B. SEGAL, The definition of conformal field theory (to appear).  Zbl 0657.53060
[11] E. WITTEN, Super-symmetry and Morse theory, J. Diff. Geom., 17 (4) (1982), 661-692.  MR 84b:58111 |  Zbl 0499.53056
[12] E. WITTEN, Quantum field theory and the Jones polynomial, Comm. Math. Phys. (to appear).
Article |  Zbl 0667.57005
[13] E. WITTEN, Topological quantum field theory, Comm. Math. Phys., 117 (1988), 353-386.
Article |  MR 89m:57037 |  Zbl 0656.53078
[14] E. WITTEN, Topological sigma models, Comm. Math. Phys., 118 (1988), 411-449.
Article |  MR 90b:81080 |  Zbl 0674.58047
[15] E. WITTEN, 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311 (1988/1989), 46-78.  MR 90a:83041
[16] E. WITTEN, Topology changing amplitudes in 2 + 1 dimensional gravity, Nucl. Phys. B (to appear).
[17] E. WITTEN, Elliptic genera and quantum field theory, Comm. Math. Phys., 109 (1987), 525-536.
Article |  MR 89i:57017 |  Zbl 0625.57008
Copyright Cellule MathDoc 2014 | Credit | Site Map