@article{PMIHES_1973__42__5_0,
author = {Friedlander, Eric M.},
title = {Fibrations in etale homotopy theory},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {5--46},
year = {1973},
publisher = {Institut des Hautes Etudes Scientifiques},
volume = {42},
mrnumber = {366929},
zbl = {0351.55011},
language = {en},
url = {https://www.numdam.org/item/PMIHES_1973__42__5_0/}
}
Friedlander, Eric M. Fibrations in etale homotopy theory. Publications Mathématiques de l'IHÉS, Tome 42 (1973), pp. 5-46. https://www.numdam.org/item/PMIHES_1973__42__5_0/
[1] , On the groups J(X), I, Topology, 2 (1963), 181-195. | Zbl | MR
[2] , Grothendieck Topologies, Harvard Seminar Notes, 1962. | Zbl
[3] , and , Séminaire de géométrie algébrique ; Cohomologie étale des schémas, 1963-1964, notes miméographiées, I.H.E.S.
[4] and , Etale Homotopy, Lecture notes in mathematics, n° 100, Springer, 1969. | Zbl | MR
[5] , Cohomology theories, Ann. of Math., 75 (1962), 467-484. | Zbl | MR
[6] , Partitions of unity in the theory of fibrations, Ann. of Math., 78 (1963), 223-255. | Zbl | MR
[7] and , Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik, vol. 34, Springer, 1967. | Zbl | MR
[8] , Séminaire de géométrie algébrique du Bois-Marie 1960/1961, SGA 1, Lecture notes in mathematics, n° 224, Springer, 1971. | Zbl
[9] , The generalized Whitney sum, Quart. J. Math. (2), 16 (1965), 360-384. | Zbl | MR
[10] , On c.s.s. complexes, Amer. J. Math., 79 (1957), 449-476. | Zbl | MR
[11] , On spaces having the homotopy type of a C-W complex, Trans. A.M.S., 90 (1959), 272-280. | Zbl | MR
[12] , The geometric realization of a Kan fibration is a Serre fibration, Proc. A.M.S., 19 (1968), 1499-1500. | Zbl | MR
[13] , Some remarks on etale homotopy theory and a conjecture of Adams, Topology, 7 (1968), 111-116. | Zbl | MR
[14] , Geometric Topology, part I, M.I.T. Notes, 1970.
[15] , A proof of the comparison theorem for spectral sequences, Proc. Camb. Phil. Soc., 53 (1957), 57-62. | Zbl | MR
[16] , Simplicial objects in algebraic topology, D. Van Nostrand, 1967. | Zbl | MR






