We propose and analyze a semi lagrangian method for the convection-diffusion equation. Error estimates for both semi and fully discrete finite element approximations are obtained for convection dominated flows. The estimates are posed in terms of the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478-2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349-366] and the dependence of various constants upon the diffusion parameter is characterized. Error estimates independent of the diffusion constant are obtained when the velocity field is computed exactly.
Keywords: convection diffusion, moving meshes, lagrangian formulation
@article{M2AN_2008__42_1_25_0,
author = {Chrysafinos, Konstantinos and Walkington, Noel J.},
title = {Lagrangian and moving mesh methods for the convection diffusion equation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {25--55},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {1},
doi = {10.1051/m2an:2007053},
mrnumber = {2387421},
zbl = {1136.65089},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2007053/}
}
TY - JOUR AU - Chrysafinos, Konstantinos AU - Walkington, Noel J. TI - Lagrangian and moving mesh methods for the convection diffusion equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 25 EP - 55 VL - 42 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007053/ DO - 10.1051/m2an:2007053 LA - en ID - M2AN_2008__42_1_25_0 ER -
%0 Journal Article %A Chrysafinos, Konstantinos %A Walkington, Noel J. %T Lagrangian and moving mesh methods for the convection diffusion equation %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 25-55 %V 42 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007053/ %R 10.1051/m2an:2007053 %G en %F M2AN_2008__42_1_25_0
Chrysafinos, Konstantinos; Walkington, Noel J. Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 1, pp. 25-55. doi: 10.1051/m2an:2007053
[1] and , Lagrangian finite element analysis applied to viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7 (1987) 953-984. | Zbl
[2] and , Analysis of some moving space-time finite element methods. SIAM J. Numer. Anal. 30 (1993) 1-18. | Zbl | MR
[3] and , Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems. SIAM J. Numer. Anal. 39 (2002) 1954-1984 (electronic). | Zbl | MR
[4] , and , On the stability of the projection in . Math. Comp. 71 (2002) 147-156 (electronic). | Zbl | MR
[5] and , Design and application of a gradient-weighted moving finite element code. II. In two dimensions. SIAM J. Sci. Comput. 19 (1998) 766-798 (electronic). | Zbl | MR
[6] , Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for -stability of the -projection onto finite element spaces. Math. Comp. 71 (2002) 157-163 (electronic). | Zbl | MR
[7] and , Error estimates for the discontinuous Galerkin methods for implicit parabolic equations. SIAM J. Numer. Anal. 43 (2006) 2478-2499. | Zbl | MR
[8] and , Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349-366. | Zbl | MR
[9] , The Finite Element Method for Elliptic Problems. North-Holland (1978). | Zbl | MR
[10] , An Eulerian-Lagrangian approach for incompressible fluids: local theory. J. Amer. Math. Soc. 14 (2001) 263-278 (electronic). | Zbl | MR
[11] , An Eulerian-Lagrangian approach to the Navier-Stokes equations. Comm. Math. Phys. 216 (2001) 663-686. | Zbl | MR
[12] , , and , Computational Geometry. Springer (2000). | Zbl | MR
[13] , and , Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871-885. | Zbl | MR
[14] and , Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2002) 914-927 (electronic). | Zbl | MR
[15] and , Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35 (1998) 909-940 (electronic). | Zbl | MR
[16] , , , and , Symmetric error estimates for moving mesh mixed methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2003) 2270-2291. | Zbl | MR
[17] and , Dynamic-mesh finite element method for Lagrangian computational fluid dynamics. Finite Elem. Anal. Des. 38 (2002) 965-982. | Zbl | MR
[18] , and , Lagrangian finite element method for free surface Navier-Stokes flow using fractional step methods. Int. J. Numer. Methods Fluids 13 (1991) 841-855. | Zbl
[19] , Moving finite elements. II. SIAM J. Numer. Anal. 18 (1981) 1033-1057. | Zbl | MR
[20] and , Moving finite elements. I. SIAM J. Numer. Anal. 18 (1981) 1019-1032. | Zbl | MR
[21] , and , Stability of the Lagrange-Galerkin method with nonexact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625-653. | Zbl | MR | Numdam
[22] , A new and simple algorithm for quality 2-dimensional mesh generation, in Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992) 83-92. | Zbl | MR
[23] , Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics 25. Springer-Verlag, Berlin (1997). | Zbl | MR
Cité par Sources :






