Kudin, Konstantin N.; Scuseria, Gustavo E.
Converging self-consistent field equations in quantum chemistry - recent achievements and remaining challenges
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) no. 2 , p. 281-296
Zbl 1135.81381
doi : 10.1051/m2an:2007022
URL stable : http://www.numdam.org/item?id=M2AN_2007__41_2_281_0

Classification:  35P30,  65B99,  65K10,  81-08
This paper reviews popular acceleration techniques to converge the non-linear self-consistent field equations appearing in quantum chemistry calculations with localized basis sets. The different methodologies, as well as their advantages and limitations are discussed within the same framework. Several illustrative examples of calculations are presented. This paper attempts to describe recent achievements and remaining challenges in this field.


[1] G.B. Bacskay, A quadratically convergent Hartree-Fock (QC-SCF) method - application to closed shell systems. Chem. Phys. 61 (1981) 385-404.

[2] S.P. Bhattacharyya, Accelerated convergence in SCF calculations and level shifting technique. Chem. Phys. Lett. 56 (1978) 395-398.

[3] S.F. Boys, Electronic wave functions. 1. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond. A 200 (1950) 542-554. Zbl 0040.28202

[4] E. Cancés, in Mathematical Models and Methods for ab initio Quantum Chemistry, M. Defranceschi and C. Le Bris Eds., Lecture Notes in Chemistry 74, Springer, Berlin (2000). MR 1857459 | Zbl 0979.00023

[5] E. Cancés, Self-consistent field algorithms for Kohn-Sham models with fractional occupation numbers. J. Chem. Phys. 114 (2001) 10616-10622.

[6] E. Cancés and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: M2AN 34 (2000) 749-774. Numdam | Zbl 1090.65548

[7] E. Cancés and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79 (2000) 82-90.

[8] E. Cancès, K.N. Kudin, G.E. Scuseria and G. Turinici, Quadratically convergent algorithm for fractional occupation numbers in density functional theory. J. Chem. Phys. 118 (2003) 5364-5368.

[9] A.D. Daniels and G.E. Scuseria, Converging difficult SCF cases with conjugate gradient density matrix search. Phys. Chem. Chem. Phys. 2 (2000) 2173-2176.

[10] M.D. De Andrade, K.C. Mundim and L.A.C. Malbouisson, GSA algorithm applied to electronic structure: Hartree-Fock-GSA method. Int. J. Quant. Chem. 103 (2005) 493-499.

[11] R.M. Dreizler and E.K.U. Gross, Density functional theory. Springer, Berlin (1990). Zbl 0723.70002

[12] A. Fouqueau, S. Mer, M.E. Casida, L.M.L. Daku, A. Hauser, T. Mineva and F. Neese, Comparison of density functionals for energy and structural differences between the high-[T-5(2g) : (t(2g))(4)(e(g))(2)] and low-[(1)A(1g) : (t(2g))(6)(e(g))(0)] spin states of the hexaquoferrous cation 120 (2004) 9473-9486.

[13] J.B. Francisco, J.M. Martinez and L. Martinez, Globally convergent trust-region methods for self-consitent field electronic structure calculations. J. Chem. Phys. 121 (2004) 10863-10878. Zbl 1110.92069

[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision C.02. Gaussian Inc., Wallingford CT (2004).

[15] D.R. Hartree, The calculation of atomic structures. Wiley (1957). MR 90408 | Zbl 0079.21401

[16] T. Helgaker, H. Larsen, J. Olsen and P. Jorgensen, Direct optimization of the AO density matrix in Hartree-Fock and Kohn-Sham theories. Chem. Phys. Lett. 327 (2000) 397-403.

[17] P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) 864B-B871.

[18] H. Hsu, E.R. Davidson and R.M. Pitzer, SCF method for hole states.J. Chem. Phys. 65 (1976) 609-613.

[19] B.G. Johnson, P.M.W. Gill and J.A. Pople, The performance of a family of Density Functional methods. J. Chem. Phys. 98 (1993) 5612-5626.

[20] G. Karlstrom, Dynamical damping based on energy minimization for use in ab initio molecular-orbital SCF calculations. Chem. Phys. Lett. 67 (1979) 348-350.

[21] W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133-A1138.

[22] K.N. Kudin, G.E. Scuseria and E. Cancès, A black-box self-consistent field convergence algorithm: One step closer. J. Chem. Phys. 116 (2002) 8255-8261.

[23] P.L. Lions, Solutions of Hartree-Fock equations for coulomb-systems. Comm. Math. Phys. 109 (1987) 33-97. Zbl 0618.35111

[24] A.V. Mitin, The dynamic level shift method for improving the convergence of the SCF procdure. J. Comput. Chem. 9 (1988) 107-110.

[25] M.A. Natiello and G.E. Scuseria, Convergence properties of Hartree-Fock SCF molecular calculations. Int. J. Quantum Chem. 26 (1984) 1039-1049.

[26] P. Pulay, Convergence acceleration of iterative sequences - the case of SCF iteration. Chem. Phys. Lett. 73 (1980) 393-398.

[27] P. Pulay, Improved SCF convergence acceleration. J. Comp. Chem. 3 (1982) 556-560.

[28] A.D. Rabuck and G.E. Scuseria, Improving self-consistent field convergence by varying occupation numbers. J. Chem. Phys. 110 (1999) 695-700.

[29] M. Ramek and H.P. Fritzer, New aspects of dynamical damping in ab initio molecular SCF calculations. Comput. Chem. 6 (1982) 165-168.

[30] C.C.J. Roothan, New developments in molecular orbital theory. Rev. Mod. Phys. 23 (1951) 69-89. Zbl 0045.28502

[31] Y. Saad and M.H. Schultz, GMRES - a generalized minimal residual algorithm for solving nonsymmetric linear-systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856-869. Zbl 0599.65018

[32] V.R. Saunders and I.H. Hillier, Level-shifting method for converging closed shell Hartree-Fock wave-functions. Int. J. Quant. Chem. 7 (1973) 699-705.

[33] N.E. Schultz, Y. Zhao and D.G. Truhlar, Databases for transition element bonding: Metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J. Phys. Chem. A 109 (2005) 4388-4403.

[34] G.E. Scuseria, Linear scaling density functional calculations with Gaussian orbitals. J. Phys. Chem. A 103 (1999) 4782-4790.

[35] L. Thogersen, J. Olsen, D. Yeager, P. Jorgensen, P. Salek and T. Helgaker, The trust-region self-consistent field method: Towards a black-box optimization in Hartree-Fock and Kohn-Sham theories. J. Chem. Phys. 121 (2004) 16-27.

[36] L. Thogersen, J. Olsen, A. Kohn, P. Jorgensen, P. Salek and T. Helgaker, The trust-region self-consitent field method in Kohn-Sham density-functional theory. J. Chem. Phys. 123 (2005) 074103.

[37] T.V. Voorhis and M. Head-Gordon, A geometric approach to direct minimization. Mol. Phys. 100 (2002) 1713-1721.

[38] O.V. Yazyev, K.N. Kudin and G.E. Scuseria, Efficient algorithm for band connectivity resolution. Phys. Rev. B 65 (2002) 205117.

[39] M.C. Zerner and M. Hehenberger, Dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554.