This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch. Math. 16 (1965) 325-329] and Combined Field Integral Equations (CFIE) [R.F. Harrington and J.R. Mautz, Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157-164]. Finally, some numerical experiments are performed to test their efficiency.
Keywords: acoustic scattering, Helmholtz equation, second-kind Fredholm integral equation, Krylov iterative solution
@article{M2AN_2007__41_1_147_0,
author = {Antoine, Xavier and Darbas, Marion},
title = {Generalized combined field integral equations for the iterative solution of the three-dimensional {Helmholtz} equation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {147--167},
year = {2007},
publisher = {EDP Sciences},
volume = {41},
number = {1},
doi = {10.1051/m2an:2007009},
mrnumber = {2323695},
zbl = {1123.65117},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2007009/}
}
TY - JOUR AU - Antoine, Xavier AU - Darbas, Marion TI - Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 147 EP - 167 VL - 41 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007009/ DO - 10.1051/m2an:2007009 LA - en ID - M2AN_2007__41_1_147_0 ER -
%0 Journal Article %A Antoine, Xavier %A Darbas, Marion %T Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 147-167 %V 41 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007009/ %R 10.1051/m2an:2007009 %G en %F M2AN_2007__41_1_147_0
Antoine, Xavier; Darbas, Marion. Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 147-167. doi: 10.1051/m2an:2007009
[1] , and, A new well-conditionned integral formulation for Maxwell Equations in three dimensions. IEEE Trans. Ant. Prop. 53 (2005) 2995-3004.
[2] and, Solution of Helmholtz equation in exterior domain by elementary boundary integral equations. J. Comput. Phys. 118 (1995) 208-221. | Zbl
[3] and, Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. Internat. J. Numer. Methods Engrg. 41 (1998) 875-898. | Zbl
[4] , Fast approximate computation of a time-harmonic scattered field using the On-Surface Radiation Condition method. IMA J. Appl. Math. 66 (2001) 83-110. | Zbl
[5] , Some Applications of the On-Surface Radiation Condition to the Integral Equations for Solving Electromagnetic Scattering Problems. Industrial Mathematics and Statistics, Narosa Publishing (2003).
[6] and, Alternative integral equations for the iterative solution of acoustic scattering problems. Quaterly J. Mech. Appl. Math. 58 (2005) 107-128. | Zbl
[7] , and, Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape. J. Math. Anal. Appl. 229 (1999) 184-211. | Zbl
[8] , and, Analytic preconditioners for the electric field integral equation. Internat. J. Numer. Methods Engrg. 61 (2004) 1310-1331.
[9] , and, An improved surface radiation condition for high-frequency acoustics scattering problems. Comput. Meth. Appl. Mech. Eng. 195 (2006) 4060-4074. | Zbl
[10] , and, Electromagnetic and acoustic scattering by simple shapes. North-Holland Publishing Compagny, Amsterdam (1969). | Zbl | MR
[11] and, Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16 (1965) 325-329. | Zbl
[12] and, A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169 (2001) 80-110. | Zbl
[13] and, Surface scattering in three dimensions: an accelerated high-order solver. P. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001) 2921-2934. | Zbl
[14] and, A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42 (2004) 621-640. | Zbl
[15] and, Regularized combined field integral equations. Numer. Math. 100 (2005) 1-19. | Zbl
[16] , and, A higher-order on-surface radiation condition derived from an analytic representation of a Dirichlet-to-Neumann map. IEEE. Trans. Antennas Progat. 51 (2003) 1607-1614.
[17] ,,, and, Convergence estimates for solution of integral equations with GMRES. J. Integral Equations Appl. 8 (1996) 19-34. | Zbl
[18] , and, Experiments with sparse approximate preconditioning of dense linear problems from electromagnetic applications. Technical Report TR/PA/00/04, Cerfacs, France (2000).
[19] , and, Sparse pattern selection strategies for robust Froebenius norm minimization preconditioners in electromagnetism, Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications (Minneapolis, MN, 1999). Numer. Lin. Alg. Appl. 7 (2000) 667-685. | Zbl
[20] and, Boundary Element Methods. Academic Press, Harcourt Brace Jovanovitch, Publishers (1992). | Zbl | MR
[21] , On a class of preconditioning methods for dense linear systems from boundary elements. SIAM J. Sci. Comput. 20 (1998) 684-698. | Zbl
[22] , Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems. Electron. Trans. Numer. Anal. 8 (1999) 138-153. | Zbl
[23] , An analysis of sparse approximate inverse preconditioners for boundary elements. SIAM J. Matrix Anal. Appl. 22 (2001) 1958-1978. | Zbl
[24] and, Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 36 (2001) 475-489. | Zbl
[25] and Warnick, On the spectrum of the electric field integral equation and the convergence of the moment method. Internat. J. Numer. Methods Engrg. 51 (2001) 31-56. | Zbl
[26] ,, and, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House Antennas and Propagation Library, Norwood (2001).
[27] and, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C.R. Acad. Sci. Paris, Sér. I 330 (2000) 617-622. | Zbl
[28] and, A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40 (2002) 1100-1135. | Zbl
[29] and, Integral Equations in Scattering Theory. Pure and Applied Mathematics, John Wiley and Sons, New York (1983). | Zbl | MR
[30] and, Inverse Acoustic and Electromagnetic Scattering Theory. Second Edition, Applied Mathematical Sciences 93, Springer-Verlag, Berlin (1998). | Zbl | MR
[31] , Préconditionneurs Analytiques de type Calderòn pour les Formulations Intégrales des Problèmes de Diffraction d'ondes. Ph.D. Thesis, Université P. Sabatier, Toulouse, France (November 2004).
[32] , Generalized CFIE for the iterative solution of 3-D Maxwell Equations. Appl. Math. Lett. 19 (2006) 834-839. | Zbl
[33] , An improved discrete wavelet transform preconditioner for dense matrix problems. SIAM J. Matrix Anal. Appl. 25 (2003) 642-661. | Zbl
[34] and, H-field, E-field and combined field solution for conducting bodies of revolution. Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157-164.
[35] and, Improving the beam propagation method for TM polarization. Opt. Quant. Electron. 35 (2003) 507-519.
[36] , Surface radiation conditions. IMA J. Appl. Math. 41 (1988) 21-30. | Zbl
[37] , An approximate boundary condition in acoustics. J. Sound Vibr. 121 (1988) 37-45. | Zbl
[38] , An improved surface radiation condition. IMA J. Appl. Math. 48 (1992) 163-193. | Zbl
[39] and, GMRES and integral operators. SIAM J. Sci. Comput. 17 (1996) 217-226. | Zbl
[40] , Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quaterly J. Mech. Appl. Math. 38 (1985) 323-341. | Zbl
[41] , and, A new formulation of electromagnetic wave scattering using the on-surface radiation condition method. IEEE Trans. Antennas Propag. 35 (1987) 153-161. | Zbl
[42] and, Analysis of a boundary integral equation for high frequency Helmholtz equation, 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, Colorado, 1-5 June (1998) 765-767. | Zbl
[43] and, New integral equation formulations for wave scattering problems. ESAIM: M2AN 38 (2004) 157-176. | Zbl | Numdam
[44] and, Beam propagation method using a Padé approximant of the propagator. Opt. Lett. 27 (2002) 683-685.
[45] , Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000). | Zbl | MR
[46] ,,, Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101 (1997) 760-766
[47] , A note on the superlinear convergence of GMRES. SIAM J. Numer. Anal. 34 (1997) 513-516. | Zbl
[48] , Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414-439. | Zbl
[49] , Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston (1996). | Zbl
[50] and, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856-869. | Zbl
[51] and, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191-216. | Zbl
[52] , A guide to electric-field propagation techniques for guided-wave optics. Opt. Quant. Electron. 26 (1994) 185-197.
Cité par Sources :






