In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable -scheme with . Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237; Verfürth, Calcolo 40 (2003) 195-212] it is easy to identify a time-discretization error-estimator and a space-discretization error-estimator. In this work we introduce a similar splitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math. 72 (1996) 313-348; Petzoldt, Adv. Comput. Math. 16 (2002) 47-75] we have upper and lower bounds whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.
Keywords: a posteriori error estimates, parabolic problems, discontinuous coefficients
@article{M2AN_2006__40_6_991_0,
author = {Berrone, Stefano},
title = {Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {991--1021},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {6},
doi = {10.1051/m2an:2006034},
mrnumber = {2297102},
zbl = {1121.65098},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2006034/}
}
TY - JOUR AU - Berrone, Stefano TI - Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 991 EP - 1021 VL - 40 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2006034/ DO - 10.1051/m2an:2006034 LA - en ID - M2AN_2006__40_6_991_0 ER -
%0 Journal Article %A Berrone, Stefano %T Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 991-1021 %V 40 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2006034/ %R 10.1051/m2an:2006034 %G en %F M2AN_2006__40_6_991_0
Berrone, Stefano. Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 6, pp. 991-1021. doi: 10.1051/m2an:2006034
[1] and, Error estimates for adaptive finite element method. SIAM J. Numer. Anal. 15 (1978) 736-754. | Zbl
[2] and, An optimal control approach to a posteriori error estimation in finite element methods. Acta Num. (2001) 1-102. | Zbl
[3] , and, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2004) 1117-1138. | Zbl
[4] and, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl
[5] , The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978). | Zbl | MR
[6] , Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 9 (1975) 77-84. | Zbl | Numdam
[7] , A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | Zbl
[8] , and, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72 (1996) 313-348. | Zbl
[9] and, Adaptive finite element methods for parabolic problems. V. Long-time integration. SIAM J. Numer. Anal. 32 (1995) 1750-1763. | Zbl
[10] ,, and, Introduction to adaptive methods for differential equations. Acta Num. (1995) 105-158. | Zbl
[11] ,, and, LibMesh. The University of Texas, Austin, CFDLab and Technische Universität Hamburg, Hamburg. http://libmesh.sourceforge.net.
[12] , and, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631-658. | Zbl
[13] , A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16 (2002) 47-75. | Zbl
[14] , Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl
[15] , A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic equations. Ruhr-Universität Bochum, Report 180/1995. | Zbl
[16] , A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley & Sons, Chichester-New York (1996). | Zbl
[17] , A posteriori error estimates for finite element discretization of the heat equations. Calcolo 40 (2003) 195-212.
[18] and, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337-357. | Zbl
Cité par Sources :






