In this paper, we are interested in the modelling and the finite element approximation of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized problem is put under a mixed variational formulation, whose approximation is achieved by means of conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure and the temperature. The discrete problem thus obtained is well-posed and a posteriori error estimates are also established. Numerical tests are presented validating the developed code.
Keywords: petroleum reservoir, thermometrics, porous medium, mixed finite elements, a posteriori estimators
Amara, Mohamed  ; Capatina-Papaghiuc, Daniela  ; Denel, Bertrand  ; Terpolilli, Peppino 1
@article{M2AN_2005__39_2_349_0,
author = {Amara, Mohamed and Capatina-Papaghiuc, Daniela and Denel, Bertrand and Terpolilli, Peppino},
title = {Mixed finite element approximation for a coupled petroleum reservoir model},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {349--376},
year = {2005},
publisher = {EDP Sciences},
volume = {39},
number = {2},
doi = {10.1051/m2an:2005015},
mrnumber = {2143952},
zbl = {1130.76045},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2005015/}
}
TY - JOUR AU - Amara, Mohamed AU - Capatina-Papaghiuc, Daniela AU - Denel, Bertrand AU - Terpolilli, Peppino TI - Mixed finite element approximation for a coupled petroleum reservoir model JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 349 EP - 376 VL - 39 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2005015/ DO - 10.1051/m2an:2005015 LA - en ID - M2AN_2005__39_2_349_0 ER -
%0 Journal Article %A Amara, Mohamed %A Capatina-Papaghiuc, Daniela %A Denel, Bertrand %A Terpolilli, Peppino %T Mixed finite element approximation for a coupled petroleum reservoir model %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 349-376 %V 39 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2005015/ %R 10.1051/m2an:2005015 %G en %F M2AN_2005__39_2_349_0
Amara, Mohamed; Capatina-Papaghiuc, Daniela; Denel, Bertrand; Terpolilli, Peppino. Mixed finite element approximation for a coupled petroleum reservoir model. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 2, pp. 349-376. doi: 10.1051/m2an:2005015
[1] , Modélisation des écoulements dans les réservoirs souterrains avec prise en compte des interactions puits/réservoir. Thèse de doctorat, Université de Saint-Etienne (1992).
[2] ,, and, Modelling, analysis and numerical approximation of flow with heat transfer in a petroleum reservoir, Preprint No. 0415, Université de Pau (2004) (http://lma.univ-pau.fr/publis/publis.php).
[3] , Well testing: Interpretation methods. Editions Technip, Paris (1998).
[4] and, The mathematical theory of Finite Element Methods. Springer Verlag, New York (1994). | Zbl | MR
[5] and, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York (1991). | Zbl | MR
[6] and, A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Resources 14 (1991) 329-348.
[7] , The finite element method for elliptic problems error analysis. North Holland, Amsterdam (1978). | Zbl | MR
[8] , and, On the simulation of multicomponent gas flow in porous media. Appl. Numer. Math. 31 (1999) 405-427. | Zbl
[9] , Elliptic problems on non-smooth domains. Pitman, Boston (1985). | Zbl
[10] ,,, and, Mother: A model for interpreting thermometrics. SPE 28588 (1994).
[11] and, A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15 (1976) 59-64. | Zbl
[12] and, Mixed and Hybrid Methods, in Handbook of Numerical Analysis Vol. II. North Holland, Amsterdam (1991) 523-639. | Zbl
[13] and, A posteriori error estimator for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | Zbl
Cité par Sources :






