We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is used on the fluid-structure interface. Applying a general approximation theory for spectral problems, under mild assumptions, we obtain optimal order error estimates for the computed eigenfunctions, as well as a double order for the eigenvalues. These estimates are valid with constants independent of the plate thickness. Finally, we report several numerical experiments showing the behavior of the methods.
Keywords: Reissner-Mindlin, MITC methods, fluid-structure interaction
@article{M2AN_2004__38_6_1055_0,
author = {Hern\'andez, Erwin},
title = {Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1055--1070},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {6},
doi = {10.1051/m2an:2004050},
mrnumber = {2108944},
zbl = {1130.74453},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004050/}
}
TY - JOUR AU - Hernández, Erwin TI - Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 1055 EP - 1070 VL - 38 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004050/ DO - 10.1051/m2an:2004050 LA - en ID - M2AN_2004__38_6_1055_0 ER -
%0 Journal Article %A Hernández, Erwin %T Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 1055-1070 %V 38 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004050/ %R 10.1051/m2an:2004050 %G en %F M2AN_2004__38_6_1055_0
Hernández, Erwin. Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 6, pp. 1055-1070. doi: 10.1051/m2an:2004050
[1] ,, and, Derivation and justification of plate models by variational methods, in Plates and Shells, M. Fortin Ed., AMS, Providence, CRM Proc. Lect. Notes Ser. 21 (1999) 1-20. | Zbl
[2] and, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276-1290. | Zbl
[3] and, On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation in Mathematics of Finite Elements an Applications V, J.R. Whiteman Ed., Academic Press, London (1985) 491-503. | Zbl
[4] and, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21 (1985) 367-383. | Zbl
[5] and, Finite element computation of the vibration modes of a fluid-solid system. Comp. Methods Appl. Mech. Eng. 119 (1994) 355-370. | Zbl
[6] , and, An hexahedral face element for elastoacoustic vibration problems. J. Comp. Acoust. 119 (1994) 355-370. | Zbl
[7] ,,, and, Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. | Zbl
[8] and, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | Zbl | MR
[9] , and, Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models. Math. Models Methods Appl. Sci. 1 (1991) 125-151. | Zbl
[10] and, On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp. 58 (1992) 561-573. | Zbl
[11] ,,, and, Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp. 68 (1999) 1447-1463. | Zbl
[12] ,,, and, Finite element analysis of the vibration problem of a plate coupled with a fluid. Numer. Math. 86 (2000) 591-616. | Zbl
[13] ,,, and, Computation of the vibration modes of plates and shells by low-order MITC quadrilateral finite elements. SIAM J. Numer. Anal. 41 (2003) 1751-1772. | Zbl
[14] , Métodos numéricos de elementos finitos en problemas de interacción fluido-estructura. Ph.D. Thesis, U. de Santiago de Compostela, Spain (2002).
[15] and, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986). | Zbl | MR
[16] , The Finite Element Method: Linear Static and Dinamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ (1987). | Zbl | MR
[17] and, Fluid-structure interactions. John Wiley & Sons, New York (1995). | Zbl
[18] and, The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comp. 65 (1996) 1463-1475. | Zbl
[19] and, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer-Verlag, Berlin, Heidelberg, New York. Lect. Notes Math. 606 (1977) 292-315. | Zbl
[20] and, An error analysis of MITC plate elements. SIAM J. Numer. Anal. 34 (1997) 544-568. | Zbl
[21] , Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris 6, France (1977).
Cité par Sources :





