In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
Keywords: finite elements, Steklov eigenvalue problem, reduced integration
@article{M2AN_2004__38_1_27_0,
author = {Armentano, Maria G.},
title = {The effect of reduced integration in the {Steklov} eigenvalue problem},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {27--36},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {1},
doi = {10.1051/m2an:2004002},
mrnumber = {2073929},
zbl = {1077.65115},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004002/}
}
TY - JOUR AU - Armentano, Maria G. TI - The effect of reduced integration in the Steklov eigenvalue problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 27 EP - 36 VL - 38 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004002/ DO - 10.1051/m2an:2004002 LA - en ID - M2AN_2004__38_1_27_0 ER -
%0 Journal Article %A Armentano, Maria G. %T The effect of reduced integration in the Steklov eigenvalue problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 27-36 %V 38 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004002/ %R 10.1051/m2an:2004002 %G en %F M2AN_2004__38_1_27_0
Armentano, Maria G. The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 27-36. doi: 10.1051/m2an:2004002
[1] and, Mass lumping or not mass lumping for eigenvalue problems. Numer. Methods Partial Differential Equations 19 (2003) 653-664. | Zbl
[2] and, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part. 1) (1991). | Zbl | MR
[3] and, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735-762. | Zbl
[4] and, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 12 (2001) 134-148. | Zbl
[5] , and, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201-227. | Zbl
[6] and, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | Zbl | MR
[7] , The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl | MR
[8] , Elliptic Problems in Nonsmooth Domain. Pitman Boston (1985). | Zbl | MR
[9] and, Interactions Fluids-Structures. Rech. Math. Appl. 23 (1985).
[10] , Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974). | Zbl | MR
Cité par Sources :





