Phase-field models, the simplest of which is Allen-Cahn’s problem, are characterized by a small parameter that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on . Using an energy argument combined with a topological continuation argument and a spectral estimate, we establish an a posteriori error control result with only a low order polynomial dependence in . Our result is applicable to any conforming discretization technique that allows for a posteriori residual estimation. Residual estimators for an adaptive finite element scheme are derived to illustrate the theory.
Keywords: a posteriori error estimates, phase-field models, adaptive finite element method
Kessler, Daniel 1 ; Nochetto, Ricardo H.  ; Schmidt, Alfred 2
@article{M2AN_2004__38_1_129_0,
author = {Kessler, Daniel and Nochetto, Ricardo H. and Schmidt, Alfred},
title = {A posteriori error control for the {Allen-Cahn} problem : circumventing {Gronwall's} inequality},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {129--142},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {1},
doi = {10.1051/m2an:2004006},
zbl = {1075.65117},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004006/}
}
TY - JOUR AU - Kessler, Daniel AU - Nochetto, Ricardo H. AU - Schmidt, Alfred TI - A posteriori error control for the Allen-Cahn problem : circumventing Gronwall's inequality JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 129 EP - 142 VL - 38 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004006/ DO - 10.1051/m2an:2004006 LA - en ID - M2AN_2004__38_1_129_0 ER -
%0 Journal Article %A Kessler, Daniel %A Nochetto, Ricardo H. %A Schmidt, Alfred %T A posteriori error control for the Allen-Cahn problem : circumventing Gronwall's inequality %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 129-142 %V 38 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004006/ %R 10.1051/m2an:2004006 %G en %F M2AN_2004__38_1_129_0
Kessler, Daniel; Nochetto, Ricardo H.; Schmidt, Alfred. A posteriori error control for the Allen-Cahn problem : circumventing Gronwall's inequality. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 129-142. doi: 10.1051/m2an:2004006
[1] and, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085-1095.
[2] , Analyse fonctionnelle. Dunod, Paris (1999). | Zbl
[3] and, Convergence of the phase-field model to its sharp interface limits. Euro. J. Appl. Math. 9 (1998) 417-445. | Zbl
[4] , Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differantial Equations 19 (1994) 1371-1395. | Zbl
[5] , Approximation by finite element functions using local regularization. RAIRO Anal. Numér 9 (1975) 77-84. | Zbl | Numdam
[6] and, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson (1988). | Zbl
[7] and, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl
[8] and, Adaptive finite element methods for parabolic problems iv: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl
[9] and, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Num. Math. 94 (2003) 33-65. | Zbl
[10] and, Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41 (2003) 1585-1594. | Zbl
[11] and, Existence of solutions to a phase-field model for the solidification process of a binary alloy. Math. Methods Appl. Sci. 23 (2000) 491-513. | Zbl
[12] and, ALBERT: An adaptive hierarchical finite element toolbox. Preprint 06/2000, Freiburg edition. | MR
Cité par Sources :






