We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations , in ; fully coupled by the boundary conditions , on , where is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation . We prove that if blows up in finite time then can fail to blow up if and only if and , which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.
Keywords: blow-up, parabolic equations, semi-discretization in space, asymptotic behavior, non-linear boundary conditions
@article{M2AN_2002__36_1_55_0,
author = {Acosta, Gabriel and Bonder, Juli\'an Fern\'andez and Groisman, Pablo and Rossi, Julio Daniel},
title = {Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {55--68},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {1},
doi = {10.1051/m2an:2002003},
mrnumber = {1916292},
zbl = {1003.65097},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2002003/}
}
TY - JOUR AU - Acosta, Gabriel AU - Bonder, Julián Fernández AU - Groisman, Pablo AU - Rossi, Julio Daniel TI - Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 55 EP - 68 VL - 36 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2002003/ DO - 10.1051/m2an:2002003 LA - en ID - M2AN_2002__36_1_55_0 ER -
%0 Journal Article %A Acosta, Gabriel %A Bonder, Julián Fernández %A Groisman, Pablo %A Rossi, Julio Daniel %T Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 55-68 %V 36 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2002003/ %R 10.1051/m2an:2002003 %G en %F M2AN_2002__36_1_55_0
Acosta, Gabriel; Bonder, Julián Fernández; Groisman, Pablo; Rossi, Julio Daniel. Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 1, pp. 55-68. doi: 10.1051/m2an:2002003
[1] , and, Blow-up for semidiscretizations of reaction diffusion equations. Appl. Numer. Math. 20 (1996) 145-156. | Zbl
[2] , and, On the blow-up time convergence of semidiscretizations of reaction diffusion equations. Appl. Numer. Math.26 (1998) 399-414. | Zbl
[3] ,, and. Numerical approximation of a parabolic problem with nonlinear boundary condition in several space dimensions. Preprint. | Zbl
[4] , Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations. 72 (1988) 201-269. | Zbl
[5] and, Blow-up in diffusion equations: a survey. J. Comput. Appl. Math. 97 (1998) 3-22. | Zbl
[6] and, A rescaling algorithm for the numerical calculation of blowing up solution. Comm. Pure Appl. Math. 41 (1988) 841-863. | Zbl
[7] , and, Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17 (1996) 305-327. | Zbl
[8] , Asymptotic behaviours of blowing up solutions for finite difference analogue of . J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986) 541-574. | Zbl
[9] , The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | Zbl | MR
[10] , and, Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete Contin. Dyn. Syst. 4 (1998) 497-506. | Zbl
[11] and, Global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30 (1993) 1622-1663. | Zbl
[12] and, Blow-up vs. spurious steady solutions. Proc. Amer. Math. Soc. 129 (2001) 139-144. | Zbl
[13] , and, Approximation of dissipative partial differential equations over long time intervals, in D.F. Griffiths et al., Eds., Numerical Analysis 1993. Proc. 15th Dundee Biennal Conf. on Numerical Analysis, June 29-July 2nd, 1993, University of Dundee, UK, in Pitman Res. Notes Math. Ser. 303, Longman Scientific & Technical, Harlow (1994) 180-207. | Zbl
[14] , Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992). | Zbl | MR
[15] and, Simultaneousvs. non-simultaneous blow-up. N. Z. J. Math. 29 (2000) 55-59. | Zbl
[16] , On existence and nonexistence in the large for an N-dimensional system of heat equations with nontrivial coupling at the boundary. N. Z. J. Math. 26 (1997) 275-285. | Zbl
[17] ,, and, Blow-up in QuasiLinear Parabolic Equations, in Walter de Gruyter, Ed., de Gruyter Expositions in Mathematics 19, Berlin (1995). | Zbl
[18] and, Dynamical systems and numerical analysis, in Cambridge Monographs on Applied and Computational Mathematics 2, Cambridge University Press, Cambridge (1998). | Zbl | MR
Cité par Sources :





