Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations
ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 2, pp. 295-312.

On étudie les couches limites et les limites de quasi-neutralité aux systèmes de dérivée-diffusion. On montre d’abord que cette limite est unique et déterminée par un système découplé avec données initiales et aux limites. On établit ensuite les équations des couches limites et montre l’existence et l’unicité de solutions avec l’atténuation exponentielle. Ceci implique un résultat de convergence globale (par rapport au domaine) de la suite de solutions et un taux de convergence optimale O(ε 1 2 ) dans la limite de quasi-neutralité dans L 2 .

We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate O(ε 1 2 ) to the quasi-neutral limit in L 2 .

Classification : 35B25, 35B40, 35K57
Mots clés : asymptotic analysis, boundary layers, optimal convergence rate, drift-diffusion equations
@article{M2AN_2001__35_2_295_0,
     author = {Peng, Yue-Jun},
     title = {Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {295--312},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {2},
     year = {2001},
     mrnumber = {1825700},
     zbl = {0994.35020},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_2_295_0/}
}
TY  - JOUR
AU  - Peng, Yue-Jun
TI  - Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2001
SP  - 295
EP  - 312
VL  - 35
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_2001__35_2_295_0/
LA  - en
ID  - M2AN_2001__35_2_295_0
ER  - 
%0 Journal Article
%A Peng, Yue-Jun
%T Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2001
%P 295-312
%V 35
%N 2
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_2001__35_2_295_0/
%G en
%F M2AN_2001__35_2_295_0
Peng, Yue-Jun. Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 2, pp. 295-312. http://www.numdam.org/item/M2AN_2001__35_2_295_0/

[1] J.P. Aubin, Un théorème de compacité. C. R. Acad. Sci. Paris 256 (1963) 5042-5044. | Zbl

[2] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737-754. | Zbl

[3] H. Brézis, F. Golse, R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas. C. R. Acad. Sci. Paris 321 (1995) 953-959. | Zbl

[4] S. Cordier, P. Degond, P. Markowich, C. Schmeiser, Traveling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit. Asymptot. Anal. 11 (1995) 209-224. | Zbl

[5] S. Cordier, E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm. Partial Differential Equations 25 (2000) 1099-1113. | Zbl

[6] P.C. Fife, Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal. 52 (1973) 205-232. | Zbl

[7] H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121-133. | Zbl

[8] I. Gasser, The initial time layer problem and the quasi-neutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl. (to appear). | MR | Zbl

[9] I. Gasser, D. Levermore, P. Markowich, C. Schmeiser, The initial time layer problem and the quasi-neutral limit in the drift-diffusion model (submitted). | Zbl

[10] A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling. Math. Nachr. 185 (1997) 85-110.

[11] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits. Comm. Partial Differential Equations 24 (1999) 1007-1033. | Zbl

[12] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 83-118. | Numdam | Zbl

[13] A. Jüngel, Y.J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisited. Z. Angew. Math. Phys. 51 (2000) 385-396. | Zbl

[14] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. (to appear). | MR | Zbl

[15] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villard, Paris (1969). | MR | Zbl

[16] P.A. Markowich, A singular perturbation analysis of the fundamental semiconductor device equations. SIAM J. Appl. Math. 44 (1984) 896-928. | Zbl

[17] P.A. Markowich, C. Ringhofer, C. Schmeiser, An asymptotic analysis of one-dimensional models for semiconductor devices. IMA J. Appl. Math. 37 (1986) 1-24. | Zbl

[18] Y.J. Peng, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system. Nonlinear Anal. TMA 42 (2000) 1033-1054. | Zbl

[19] P. Raviart, On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion, Lect. Notes of the Summer school in Ile d'Oléron, France (1997) 452-539.

[20] L. Tartar, Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symp. Vol. 4 and Res. Notes Math. 3 (1979) 136-212. | Zbl

[21] A. Visintin, Strong convergence results related to strict convexity. Comm. Partial Differential Equations 9 (1984) 439-466. | Zbl