@article{M2AN_2000__34_4_723_0,
author = {Vogelius, Michael S. and Volkov, Darko},
title = {Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {723--748},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {4},
mrnumber = {1784483},
zbl = {0971.78004},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_4_723_0/}
}
TY - JOUR AU - Vogelius, Michael S. AU - Volkov, Darko TI - Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 723 EP - 748 VL - 34 IS - 4 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_4_723_0/ LA - en ID - M2AN_2000__34_4_723_0 ER -
%0 Journal Article %A Vogelius, Michael S. %A Volkov, Darko %T Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 723-748 %V 34 %N 4 %I Dunod %U https://www.numdam.org/item/M2AN_2000__34_4_723_0/ %G en %F M2AN_2000__34_4_723_0
Vogelius, Michael S.; Volkov, Darko. Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 4, pp. 723-748. https://www.numdam.org/item/M2AN_2000__34_4_723_0/
[1] , and , Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. Preprint, Rutgers University (1999); Inverse Problems (submitted).
[2] , Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, New Jersey (1971). | Zbl | MR
[3] , , and , How can meromorhic approximation help to solve some 2D inverse problems for the Laplacian ? Inverse Problems 15 (1999) 79-90. | Zbl | MR
[4] , Electrical and Magnetic Methods of Nondestructive Testing. IOP Publishing, Adam Hilger, New York (1991).
[5] , and , Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. | Zbl | MR
[6] and , Integral Equation Methods in Scattering Theory. Krieger Publishing Co., Malabar, Florida (1992). | Zbl
[7] and , Nondestructive evaluation of plates using eddy current methods. Internat. J. Engrg. Sci. 36 (1998) 395-409. | MR
[8] and , Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, New York (1983). | Zbl | MR
[9] , Introduction to Electrodynamics, 2nd Ed., Prentice Hall, Upper Saddle River, New Jersey (1989).
[10] , An inverse problem for the Helmholtz equation. Inverse Problems 12 (1996) 139-156. | Zbl | MR
[11] , Classical Electrodynamics, 2nd Ed., Wiley, New York (1975). | Zbl | MR
[12] and , Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 289-298. II. Interior results. Comm. Pure Appl. Math. 38 (1985) 643-667. | Zbl | MR
[13] , The impedance imaging problem as a low-frequency limit. Inverse Problems 13 (1997) 1503-1518. | Zbl | MR
[14] , Special Functions & Their Applications. Dover Publications, New York (1972). | Zbl | MR
[15] , Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143 (1996) 71-96. | Zbl | MR
[16] , and , An inverse boundary value problem in electrodynamics. Duke Math. J. 70 (1993) 617-653. | Zbl | MR
[17] and , Electromagnetic scattering-based array processing methods for near-field object characterization. Preprint, Northeastern University (1998). | Zbl
[18] , and , A linearized inverse boundary value problem for Maxwell's equations. J. Comput. Appl. Math. 42 (1992) 123-136. | Zbl | MR
[19] and , A uniqueness theorem for an inverse boundary value problem in electrical prospection. Comm. Pure Appl. Math. 39 (1986) 91-112. | Zbl | MR
[20] and , A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125 (1987) 153-169. | Zbl | MR
[21] , A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge University Press, London (1962). | Zbl | MR | JFM






