Bänsch, Eberhard; Deckelnick, Klaus
Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) no. 5 , p. 923-938
Zbl 0948.76035 | MR 1726716 | 1 citation dans Numdam
URL stable : http://www.numdam.org/item?id=M2AN_1999__33_5_923_0

Bibliographie

[1] E. Bänsch, Local Mesh Refinement in 2 and 3 Dimensions. Impact Comp. Sci. Eng. 3 (1991) 181-191. MR 1141298 | Zbl 0744.65074

[2] E. Bänsch and B. Höhn, Numerical treatment of the Navier-Stokes equations with slip-boundary conditions. Preprint 9/ 1998, Universität Freiburg; SIAM J. Sci. Comp. (Submitted). MR 1762035 | Zbl 0970.76056

[3] G. K. Batchelor, An Introduction to Fluid Dynamics. University Press, Cambridge (1970). MR 1744638 | Zbl 0152.44402

[4] C. Bernardi, Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 212-234. MR 1014883 | Zbl 0678.65003

[5] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, New York (1991). MR 1115205 | Zbl 0788.73002

[6] M. O. Bristeau, R. Glowinski and J. Periaux, Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible flows. Comput. Phys. Rep. 6 (1987) 73-188. MR 913308

[7] P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1977). MR 520174 | Zbl 0383.65058

[8] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1985). MR 787404 | Zbl 0559.47040

[9] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer, Berlin (1986). MR 851383 | Zbl 0585.65077

[10] C. Cuvelier and J. M. Driessen, Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169 (1986) 1-26. Zbl 0623.76099

[11] S. F. Kistler and L. E. Scriven, Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system. Internat. J. Numer. Methods Fluids 4 (1984) 207-229. Zbl 0555.76026

[12] P. Knobloch, Variational Crimes in a Finite Element Discretization of 3D Stokes Equations with Nonstandard Boundary Conditions. Preprint MBI-97-4, University of Magdeburg (1997). MR 1699239 | Zbl 0958.76043

[13] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562-580. MR 842644 | Zbl 0605.65071

[14] J. A. Nitsche, On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. Numdam | MR 631678 | Zbl 0467.35019

[15] F. Otto, Die Babuška-Brezzi Bedingung für das Taylor-Hood-Element. Diploma thesis, University of Bonn, Germany (1990).

[16] H. Saito and L. E. Scriven, Study of Coating Flow by the Finite Element Method. J. Comput. Phys. 42 (1981) 53-76. Zbl 0466.76035

[17] D. Schwabe, Surface-Tension-Driven Flow in Crystal Growth Melts, in Crystal Growth, Properties and Applications 11. Springer, Berlin (1988).

[18] S. A. Solonnikov and V. E. Ščadilov, On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973) 186-199. MR 350163 | Zbl 0313.35063

[19] R. Verfürth, A combined conjugate gradient-multigrid algorithm for the numerical solutin of the Stokes problem. IMA J. Numer. Anal. 4 (1984) 441-455. MR 768638 | Zbl 0563.76028

[20] R. Verfürth, Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. Math. Modelling Numer. Anal. 19 (1985) 461-475. Numdam | MR 807327 | Zbl 0579.76024

[21] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697-721. MR 884296 | Zbl 0596.76031

[22] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II. Numer. Math. 59 (1991) 615-636. MR 1124131 | Zbl 0739.76034