@article{M2AN_1999__33_1_113_0,
author = {Li-Ping, He and De-Kang, Mao and Ben-Yu, Guo},
title = {Prediction-correction {Legendre} spectral scheme for incompressible fluid flow},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {113--120},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {1},
mrnumber = {1685747},
zbl = {0917.76062},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_1_113_0/}
}
TY - JOUR AU - Li-Ping, He AU - De-Kang, Mao AU - Ben-Yu, Guo TI - Prediction-correction Legendre spectral scheme for incompressible fluid flow JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 113 EP - 120 VL - 33 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_1_113_0/ LA - en ID - M2AN_1999__33_1_113_0 ER -
%0 Journal Article %A Li-Ping, He %A De-Kang, Mao %A Ben-Yu, Guo %T Prediction-correction Legendre spectral scheme for incompressible fluid flow %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 113-120 %V 33 %N 1 %I EDP Sciences %U https://www.numdam.org/item/M2AN_1999__33_1_113_0/ %G en %F M2AN_1999__33_1_113_0
Li-Ping, He; De-Kang, Mao; Ben-Yu, Guo. Prediction-correction Legendre spectral scheme for incompressible fluid flow. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 113-120. https://www.numdam.org/item/M2AN_1999__33_1_113_0/
[1] , Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). | Zbl | MR
[2] , Navier-Stokes Equations. North-Holland, Amsterdam (1977). | Zbl | MR
[3] , Computational Fluid Dynamics, 2nd edition. Hermosa Publishers, Albuquerque (1976). | MR
[4] , Finite Difference Methods for Partial Differential Equations. Science Press, Beijing (1988).
[5] , , and , Finite Element Methods in Flow Problems. John Willey, New York (1974).
[6] and , Finite Element Approximation of the Navier-Stokes Equations, Lecture Note in Math. 794. Springer-Verlag, Berlin (1979). | Zbl | MR
[7] and , Numerical Analysis of Spectral Methods, CBMS-NSF Reginal Conference Series in Applied Mathematics 26. SIAM, Philadelphia (1977). | Zbl | MR
[8] , , A Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin (1988). | Zbl | MR
[9] , Numerical methods of thermal convection. J. Comp. Phys 2 (1976) 12-26.
[10] , On the numerical approximation of some equations arising in hydrodynamics. In Numerical Solution of Fluid Problems in Continuum Physics, SIAM-AMS Proceedings II, G. Birkhoff and R.S. Varga, Eds. AMS, Providence (1970) 11-23. | Zbl | MR
[11] , Numerical methods for incompressible viscous flow. Scientia Sinica 20 (1977) 287-304. | Zbl | MR
[12] , On pressure stabilization method and projection method for unsteady Navier-Stokes equations. In Advance in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight and G. Richter, Eds. IMACS, New Brunswick (1992) 658-602.
[13] and , On pressure boundary conditions for incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 7 (1987) 1111-1145. | Zbl
[14] , and , Some spectral approximations of two-dimemsional fourth-order problems. Math. Comp. 59 (1992) 63-76. | Zbl | MR
[15] , Efficient Spectral-Galerkin method I, Direct solvers of second and fourth order equations using Legendre polynomials. SIAM Sci. Comput. 15 (1994) 1489-1505. | Zbl | MR
[16] , and , On two-dimensional Navier-Stokes equation in stream fonction form. J. Math. Anal. Appl. 205 (1997) 1. | MR
[17] and , The fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35 (1998) 146. | Zbl | MR
[18] , Sobolev Space. Academic Press, New York (1975). | Zbl | MR
[19] and , Problèmes aux Limites Non homogènes et applications, Vol. 1. Dunod, Paris (1968). | Zbl | MR
[20] and , Approximation results for orthogonal polynomials in Sobolev space. Math. Comp. 38 (1982) 67-68. | Zbl | MR
[21] , and , A prediction-correction Legendre spectral scheme for two-dimensional unsteady incompressible fluid flow in stream function form, RR 1996-3, Department of Mathematics, Shanghai University.





