We prove that if is a number field and is a Galois extension of which is not algebraically closed, then is not PAC over .
Soient un corps de nombres et une extension galoisienne de qui n’est pas algébriquement close. Alors n’est pas PAC sur .
@article{JTNB_2006__18_2_371_0,
author = {Jarden, Moshe},
title = {PAC fields over number fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {371--377},
year = {2006},
publisher = {Universit\'e Bordeaux 1},
volume = {18},
number = {2},
doi = {10.5802/jtnb.550},
zbl = {05135402},
mrnumber = {2289430},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.550/}
}
Jarden, Moshe. PAC fields over number fields. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 371-377. doi: 10.5802/jtnb.550
[1] M. D. Fried, M. Jarden, Field Arithmetic. Second edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2005. | Zbl | MR
[2] W.-D. Geyer, M. Jarden, PSC Galois extensions of Hilbertian fields. Mathematische Nachrichten 236 (2002), 119–160. | Zbl | MR
[3] G. J. Janusz, Algebraic Number Fields. Academic Press, New York, 1973. | Zbl | MR
[4] M. Jarden, A. Razon, Pseudo algebraically closed fields over rings. Israel Journal of Mathematics 86 (1994), 25–59. | Zbl | MR
[5] M. Jarden, A. Razon, Rumely’s local global principle for algebraic PC fields over rings. Transactions of AMS 350 (1998), 55–85. | Zbl | MR
[6] S. Lang, Introduction to Algebraic Geometry. Interscience Publishers, New York, 1958. | Zbl | MR
[7] J. Neukirch, Kennzeichnung der -adischen und der endlichen algebraischen Zahlkörper. Inventiones mathematicae 6 (1969), 296–314. | Zbl | MR
[8] A. Razon, Splitting of . Archiv der Mathematik 74 (2000), 263–265 | Zbl | MR
Cité par Sources :






