Let be the maximal order of the cubic field generated by a zero of for , . We prove that is a fundamental pair of units for , if
Soit l’ordre maximal du corps cubique engendré par une racine de l’equation , où , . Nous prouvons que forment un système fondamental d’unités dans , si
@article{JTNB_2004__16_3_569_0,
author = {Ennola, Veikko},
title = {Fundamental units in a family of cubic fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {569--575},
year = {2004},
publisher = {Universit\'e Bordeaux 1},
volume = {16},
number = {3},
doi = {10.5802/jtnb.461},
zbl = {1079.11056},
mrnumber = {2144958},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.461/}
}
TY - JOUR AU - Ennola, Veikko TI - Fundamental units in a family of cubic fields JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 569 EP - 575 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.461/ DO - 10.5802/jtnb.461 LA - en ID - JTNB_2004__16_3_569_0 ER -
Ennola, Veikko. Fundamental units in a family of cubic fields. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 569-575. doi: 10.5802/jtnb.461
[1] B. N. Delone, D. K. Faddeev, The Theory of Irrationalities of the Third Degree. Trudy Mat. Inst. Steklov, vol. 11 (1940); English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. | Zbl | MR
[2] V. Ennola, Cubic number fields with exceptional units. Computational Number Theory (A. Pethö et al., eds.), de Gruyter, Berlin, 1991, pp. 103–128. | Zbl | MR
[3] H. G. Grundman, Systems of fundamental units in cubic orders. J. Number Theory 50 (1995), 119–127. | Zbl | MR
[4] M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39 (1991), 41–49, Corrigendum and addendum, 41 (1992), 128. | Zbl | MR
[5] E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. | Zbl | MR
Cité par Sources :





